These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 35077484)
21. Identifying health related occupations of Twitter users through word embedding and deep neural networks. Zainab K; Srivastava G; Mago V BMC Bioinformatics; 2022 Sep; 22(Suppl 10):630. PubMed ID: 36171569 [TBL] [Abstract][Full Text] [Related]
22. Identifying Potential Lyme Disease Cases Using Self-Reported Worldwide Tweets: Deep Learning Modeling Approach Enhanced With Sentimental Words Through Emojis. Laison EKE; Hamza Ibrahim M; Boligarla S; Li J; Mahadevan R; Ng A; Muthuramalingam V; Lee WY; Yin Y; Nasri BR J Med Internet Res; 2023 Oct; 25():e47014. PubMed ID: 37843893 [TBL] [Abstract][Full Text] [Related]
23. Detecting Potentially Harmful and Protective Suicide-Related Content on Twitter: Machine Learning Approach. Metzler H; Baginski H; Niederkrotenthaler T; Garcia D J Med Internet Res; 2022 Aug; 24(8):e34705. PubMed ID: 35976193 [TBL] [Abstract][Full Text] [Related]
24. Using Longitudinal Twitter Data for Digital Epidemiology of Childhood Health Outcomes: An Annotated Data Set and Deep Neural Network Classifiers. Klein AZ; Gutiérrez Gómez JA; Levine LD; Gonzalez-Hernandez G J Med Internet Res; 2024 Mar; 26():e50652. PubMed ID: 38526542 [TBL] [Abstract][Full Text] [Related]
25. Classification of Twitter Vaping Discourse Using BERTweet: Comparative Deep Learning Study. Baker W; Colditz JB; Dobbs PD; Mai H; Visweswaran S; Zhan J; Primack BA JMIR Med Inform; 2022 Jul; 10(7):e33678. PubMed ID: 35862172 [TBL] [Abstract][Full Text] [Related]
26. Detecting associations between dietary supplement intake and sentiments within mental disorder tweets. Wang Y; Zhao Y; Zhang J; Bian J; Zhang R Health Informatics J; 2020 Jun; 26(2):803-815. PubMed ID: 31566452 [TBL] [Abstract][Full Text] [Related]
27. Characterizing the Discussion of Antibiotics in the Twittersphere: What is the Bigger Picture? Kendra RL; Karki S; Eickholt JL; Gandy L J Med Internet Res; 2015 Jun; 17(6):e154. PubMed ID: 26091775 [TBL] [Abstract][Full Text] [Related]
28. Public Perception Analysis of Tweets During the 2015 Measles Outbreak: Comparative Study Using Convolutional Neural Network Models. Du J; Tang L; Xiang Y; Zhi D; Xu J; Song HY; Tao C J Med Internet Res; 2018 Jul; 20(7):e236. PubMed ID: 29986843 [TBL] [Abstract][Full Text] [Related]
29. Detection of Hate Speech in COVID-19-Related Tweets in the Arab Region: Deep Learning and Topic Modeling Approach. Alshalan R; Al-Khalifa H; Alsaeed D; Al-Baity H; Alshalan S J Med Internet Res; 2020 Dec; 22(12):e22609. PubMed ID: 33207310 [TBL] [Abstract][Full Text] [Related]
30. Methods and Annotated Data Sets Used to Predict the Gender and Age of Twitter Users: Scoping Review. O'Connor K; Golder S; Weissenbacher D; Klein AZ; Magge A; Gonzalez-Hernandez G J Med Internet Res; 2024 Mar; 26():e47923. PubMed ID: 38488839 [TBL] [Abstract][Full Text] [Related]
31. Leveraging machine learning approaches for predicting potential Lyme disease cases and incidence rates in the United States using Twitter. Boligarla S; Laison EKE; Li J; Mahadevan R; Ng A; Lin Y; Thioub MY; Huang B; Ibrahim MH; Nasri B BMC Med Inform Decis Mak; 2023 Oct; 23(1):217. PubMed ID: 37845666 [TBL] [Abstract][Full Text] [Related]
32. Applying Multiple Data Collection Tools to Quantify Human Papillomavirus Vaccine Communication on Twitter. Massey PM; Leader A; Yom-Tov E; Budenz A; Fisher K; Klassen AC J Med Internet Res; 2016 Dec; 18(12):e318. PubMed ID: 27919863 [TBL] [Abstract][Full Text] [Related]
33. Predicting age groups of Twitter users based on language and metadata features. Morgan-Lopez AA; Kim AE; Chew RF; Ruddle P PLoS One; 2017; 12(8):e0183537. PubMed ID: 28850620 [TBL] [Abstract][Full Text] [Related]
34. Extracting health-related causality from twitter messages using natural language processing. Doan S; Yang EW; Tilak SS; Li PW; Zisook DS; Torii M BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 3):79. PubMed ID: 30943954 [TBL] [Abstract][Full Text] [Related]
35. Deep Learning for Identification of Alcohol-Related Content on Social Media (Reddit and Twitter): Exploratory Analysis of Alcohol-Related Outcomes. Ricard BJ; Hassanpour S J Med Internet Res; 2021 Sep; 23(9):e27314. PubMed ID: 34524095 [TBL] [Abstract][Full Text] [Related]
36. Social Media Monitoring of the COVID-19 Pandemic and Influenza Epidemic With Adaptation for Informal Language in Arabic Twitter Data: Qualitative Study. Alsudias L; Rayson P JMIR Med Inform; 2021 Sep; 9(9):e27670. PubMed ID: 34346892 [TBL] [Abstract][Full Text] [Related]
37. Predicting Age Groups of Reddit Users Based on Posting Behavior and Metadata: Classification Model Development and Validation. Chew R; Kery C; Baum L; Bukowski T; Kim A; Navarro M JMIR Public Health Surveill; 2021 Mar; 7(3):e25807. PubMed ID: 33724195 [TBL] [Abstract][Full Text] [Related]
38. Methods to Establish Race or Ethnicity of Twitter Users: Scoping Review. Golder S; Stevens R; O'Connor K; James R; Gonzalez-Hernandez G J Med Internet Res; 2022 Apr; 24(4):e35788. PubMed ID: 35486433 [TBL] [Abstract][Full Text] [Related]
39. A Scalable Framework to Detect Personal Health Mentions on Twitter. Yin Z; Fabbri D; Rosenbloom ST; Malin B J Med Internet Res; 2015 Jun; 17(6):e138. PubMed ID: 26048075 [TBL] [Abstract][Full Text] [Related]
40. Estimating Determinants of Attrition in Eating Disorder Communities on Twitter: An Instrumental Variables Approach. Wang T; Mentzakis E; Brede M; Ianni A J Med Internet Res; 2019 Apr; 21(5):e10942. PubMed ID: 31066718 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]