BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 35077676)

  • 1. Lipid tails modulate antimicrobial peptide membrane incorporation and activity.
    Walker LR; Marty MT
    Biochim Biophys Acta Biomembr; 2022 Apr; 1864(4):183870. PubMed ID: 35077676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating Antimicrobial Peptide-Membrane Interactions Using Fast Photochemical Oxidation of Peptides in Nanodiscs.
    Reid DJ; Rohrbough JG; Kostelic MM; Marty MT
    J Am Soc Mass Spectrom; 2022 Jan; 33(1):62-67. PubMed ID: 34866389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiologically-relevant modes of membrane interactions by the human antimicrobial peptide, LL-37, revealed by SFG experiments.
    Ding B; Soblosky L; Nguyen K; Geng J; Yu X; Ramamoorthy A; Chen Z
    Sci Rep; 2013; 3():1854. PubMed ID: 23676762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processes and mechanisms underlying burst of giant unilamellar vesicles induced by antimicrobial peptides and compounds.
    Billah MM; Ahmed M; Islam MZ; Yamazaki M
    Biochim Biophys Acta Biomembr; 2024 Jun; 1866(5):184330. PubMed ID: 38679311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action of Antimicrobial Peptides on Bacterial and Lipid Membranes: A Direct Comparison.
    Faust JE; Yang PY; Huang HW
    Biophys J; 2017 Apr; 112(8):1663-1672. PubMed ID: 28445757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of spin-labeled antimicrobial peptides magainin 2 and PGLa in lipid bilayers.
    Syryamina VN; Aisenbrey C; Kardash M; Dzuba SA; Bechinger B
    Biophys Chem; 2024 Jul; 310():107251. PubMed ID: 38678820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Molecule Resolution of Antimicrobial Peptide Interactions with Supported Lipid A Bilayers.
    Nelson N; Schwartz DK
    Biophys J; 2018 Jun; 114(11):2606-2616. PubMed ID: 29874611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of membrane tension on antimicrobial peptide PGLa-induced pore formation in lipid bilayers.
    Ahmed M; Islam MZ; Billah MM; Yamazaki M
    Biochem Biophys Res Commun; 2024 Feb; 695():149452. PubMed ID: 38169185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What's the defect? Using mass defects to study oligomerization of membrane proteins and peptides in nanodiscs with native mass spectrometry.
    Townsend JA; Marty MT
    Methods; 2023 Oct; 218():1-13. PubMed ID: 37482149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The membrane activity of the antimicrobial peptide caerin 1.1 is pH dependent.
    Sani MA; Le Brun AP; Rajput S; Attard T; Separovic F
    Biophys J; 2023 Mar; 122(6):1058-1067. PubMed ID: 36680343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the structure of nanodiscs using surface-induced dissociation mass spectrometry.
    Harvey SR; VanAernum ZL; Kostelic MM; Marty MT; Wysocki VH
    Chem Commun (Camb); 2020 Dec; 56(100):15651-15654. PubMed ID: 33355562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial peptide activity in asymmetric bacterial membrane mimics.
    Marx L; Frewein MPK; Semeraro EF; Rechberger GN; Lohner K; Porcar L; Pabst G
    Faraday Discuss; 2021 Dec; 232(0):435-447. PubMed ID: 34532723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of negative membrane tension in lipid bilayers and its effect on antimicrobial peptide magainin 2-induced pore formation.
    Ahmed M; Billah MM; Tamba Y; Yamazaki M
    J Chem Phys; 2024 Jan; 160(1):. PubMed ID: 38165103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free energies of molecular bound states in lipid bilayers: lethal concentrations of antimicrobial peptides.
    Huang HW
    Biophys J; 2009 Apr; 96(8):3263-72. PubMed ID: 19383470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vesicle protrusion induced by antimicrobial peptides suggests common carpet mechanism for short antimicrobial peptides.
    Park P; Matsubara DK; Barzotto DR; Lima FS; Chaimovich H; Marrink SJ; Cuccovia IM
    Sci Rep; 2024 Apr; 14(1):9701. PubMed ID: 38678109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating Daptomycin-Membrane Interactions Using Native MS and Fast Photochemical Oxidation of Peptides in Nanodiscs.
    Reid DJ; Dash T; Wang Z; Aspinwall CA; Marty MT
    Anal Chem; 2023 Mar; 95(11):4984-4991. PubMed ID: 36888920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide Flexibility and the Hydrophobic Moment are Determinants to Evaluate the Clinical Potential of Magainins.
    Balleza D
    J Membr Biol; 2023 Dec; 256(4-6):317-330. PubMed ID: 37097306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial Peptides: An Update on Classifications and Databases.
    Bin Hafeez A; Jiang X; Bergen PJ; Zhu Y
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Non-natural Hydrophobic Amino Acids on the Efficacy and Properties of the Antimicrobial Peptide C18G.
    Hitchner MA; Necelis MR; Shirley D; Caputo GA
    Probiotics Antimicrob Proteins; 2021 Apr; 13(2):527-541. PubMed ID: 32889698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magainin 2 and PGLa in bacterial membrane mimics IV: Membrane curvature and partitioning.
    Semeraro EF; Pajtinka P; Marx L; Kabelka I; Leber R; Lohner K; VĂ¡cha R; Pabst G
    Biophys J; 2022 Dec; 121(23):4689-4701. PubMed ID: 36258677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.