These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35077764)

  • 1. Structural Basis of the Selective Sugar Transport in Sodium-Glucose Cotransporters.
    Kamitori K; Shirota M; Fujiwara Y
    J Mol Biol; 2022 Mar; 434(5):167464. PubMed ID: 35077764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar binding of sodium-glucose cotransporters analyzed by voltage-clamp fluorometry.
    Watabe E; Kawanabe A; Kamitori K; Ichihara S; Fujiwara Y
    J Biol Chem; 2024 May; 300(5):107215. PubMed ID: 38522518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterisation of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter.
    Grempler R; Augustin R; Froehner S; Hildebrandt T; Simon E; Mark M; Eickelmann P
    FEBS Lett; 2012 Feb; 586(3):248-53. PubMed ID: 22212718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residue 457 controls sugar binding and transport in the Na(+)/glucose cotransporter.
    Díez-Sampedro A; Wright EM; Hirayama BA
    J Biol Chem; 2001 Dec; 276(52):49188-94. PubMed ID: 11602601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural selectivity of human SGLT inhibitors.
    Hummel CS; Lu C; Liu J; Ghezzi C; Hirayama BA; Loo DD; Kepe V; Barrio JR; Wright EM
    Am J Physiol Cell Physiol; 2012 Jan; 302(2):C373-82. PubMed ID: 21940664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mechanism of the SGLT family of glucose transporters.
    Han L; Qu Q; Aydin D; Panova O; Robertson MJ; Xu Y; Dror RO; Skiniotis G; Feng L
    Nature; 2022 Jan; 601(7892):274-279. PubMed ID: 34880492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single amino acid change converts the sugar sensor SGLT3 into a sugar transporter.
    Bianchi L; Díez-Sampedro A
    PLoS One; 2010 Apr; 5(4):e10241. PubMed ID: 20421923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium-independent low-affinity D-glucose transport by human sodium/D-glucose cotransporter 1: critical role of tryptophan 561.
    Kumar A; Tyagi NK; Goyal P; Pandey D; Siess W; Kinne RK
    Biochemistry; 2007 Mar; 46(10):2758-66. PubMed ID: 17288452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into genetic variants of Na(+)/glucose cotransporter SGLT1 causing glucose-galactose malabsorption: vSGLT as a model structure.
    Raja M; Kinne RK
    Cell Biochem Biophys; 2012 Jun; 63(2):151-8. PubMed ID: 22383112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-yield functional expression of human sodium/d-glucose cotransporter1 in Pichia pastoris and characterization of ligand-induced conformational changes as studied by tryptophan fluorescence.
    Tyagi NK; Goyal P; Kumar A; Pandey D; Siess W; Kinne RK
    Biochemistry; 2005 Nov; 44(47):15514-24. PubMed ID: 16300400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2.
    Hummel CS; Lu C; Loo DD; Hirayama BA; Voss AA; Wright EM
    Am J Physiol Cell Physiol; 2011 Jan; 300(1):C14-21. PubMed ID: 20980548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium-dependent reorganization of the sugar-binding site of SGLT1.
    Hirayama BA; Loo DD; Díez-Sampedro A; Leung DW; Meinild AK; Lai-Bing M; Turk E; Wright EM
    Biochemistry; 2007 Nov; 46(46):13391-406. PubMed ID: 17960916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar binding to Na+/glucose cotransporters is determined by the carboxyl-terminal half of the protein.
    Panayotova-Heiermann M; Loo DD; Kong CT; Lever JE; Wright EM
    J Biol Chem; 1996 Apr; 271(17):10029-34. PubMed ID: 8626557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. D-Glucose-recognition and phlorizin-binding sites in human sodium/D-glucose cotransporter 1 (hSGLT1): a tryptophan scanning study.
    Tyagi NK; Kumar A; Goyal P; Pandey D; Siess W; Kinne RK
    Biochemistry; 2007 Nov; 46(47):13616-28. PubMed ID: 17983207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis for glucose-galactose malabsorption.
    Wright EM; Turk E; Martin MG
    Cell Biochem Biophys; 2002; 36(2-3):115-21. PubMed ID: 12139397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Resolution Structures of Periplasmic Glucose-binding Protein of Pseudomonas putida CSV86 Reveal Structural Basis of Its Substrate Specificity.
    Pandey S; Modak A; Phale PS; Bhaumik P
    J Biol Chem; 2016 Apr; 291(15):7844-57. PubMed ID: 26861882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging the gap between structure and kinetics of human SGLT1.
    Sala-Rabanal M; Hirayama BA; Loo DD; Chaptal V; Abramson J; Wright EM
    Am J Physiol Cell Physiol; 2012 May; 302(9):C1293-305. PubMed ID: 22159082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of SGLT1 Sugar Uptake Inhibitors on Water Transport.
    Sever M; Merzel F
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TNFα regulates sugar transporters in the human intestinal epithelial cell line Caco-2.
    Barrenetxe J; Sánchez O; Barber A; Gascón S; Rodríguez-Yoldi MJ; Lostao MP
    Cytokine; 2013 Oct; 64(1):181-7. PubMed ID: 23910014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-capacity membrane potential FRET-based assay for the sodium-coupled glucose co-transporter SGLT1.
    Weinglass AB; Swensen AM; Liu J; Schmalhofer W; Thomas A; Williams B; Ross L; Hashizume K; Kohler M; Kaczorowski GJ; Garcia ML
    Assay Drug Dev Technol; 2008 Apr; 6(2):255-62. PubMed ID: 18471079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.