BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 35078402)

  • 21. Antimicrobial Peptide Exposure Selects for Resistant and Fit Stenotrophomonas maltophilia Mutants That Show Cross-Resistance to Antibiotics.
    Blanco P; Hjort K; Martínez JL; Andersson DI
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32999081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antimicrobial peptides for combating drug-resistant bacterial infections.
    Xuan J; Feng W; Wang J; Wang R; Zhang B; Bo L; Chen ZS; Yang H; Sun L
    Drug Resist Updat; 2023 May; 68():100954. PubMed ID: 36905712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tools in the Era of Multidrug Resistance in Bacteria: Applications for New Antimicrobial Peptides Discovery.
    Moretta A; Scieuzo C; Salvia R; Popović ŽD; Sgambato A; Falabella P
    Curr Pharm Des; 2022; 28(35):2856-2866. PubMed ID: 35980058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial intelligence-driven antimicrobial peptide discovery.
    Szymczak P; Szczurek E
    Curr Opin Struct Biol; 2023 Dec; 83():102733. PubMed ID: 37992451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergism between Host Defence Peptides and Antibiotics Against Bacterial Infections.
    Li J; Fernández-Millán P; Boix E
    Curr Top Med Chem; 2020; 20(14):1238-1263. PubMed ID: 32124698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning.
    Yan J; Cai J; Zhang B; Wang Y; Wong DF; Siu SWI
    Antibiotics (Basel); 2022 Oct; 11(10):. PubMed ID: 36290108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A review on antimicrobial peptides databases and the computational tools.
    Ramazi S; Mohammadi N; Allahverdi A; Khalili E; Abdolmaleki P
    Database (Oxford); 2022 Mar; 2022():. PubMed ID: 35305010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent Advances on Antimicrobial Peptides from Milk: Molecular Properties, Mechanisms, and Applications.
    Wang Z; Xu J; Zeng X; Du Q; Lan H; Zhang J; Pan D; Tu M
    J Agric Food Chem; 2024 Jan; 72(1):80-93. PubMed ID: 38152984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antimicrobial peptides as a promising treatment option against Acinetobacter baumannii infections.
    Neshani A; Sedighian H; Mirhosseini SA; Ghazvini K; Zare H; Jahangiri A
    Microb Pathog; 2020 Sep; 146():104238. PubMed ID: 32387392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Resilience of
    Juárez-López D; Morales-Ruiz E; Herrera-Zúñiga LD; González-Carrera Z; Cuevas-Reyes E; Corzo G; Schcolnik-Cabrera A; Villegas E
    Curr Med Chem; 2022; 30(1):72-103. PubMed ID: 36082872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design methods for antimicrobial peptides with improved performance.
    Mwangi J; Kamau PM; Thuku RC; Lai R
    Zool Res; 2023 Nov; 44(6):1095-1114. PubMed ID: 37914524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ACEP: improving antimicrobial peptides recognition through automatic feature fusion and amino acid embedding.
    Fu H; Cao Z; Li M; Wang S
    BMC Genomics; 2020 Aug; 21(1):597. PubMed ID: 32859150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AI4AMP: an Antimicrobial Peptide Predictor Using Physicochemical Property-Based Encoding Method and Deep Learning.
    Lin TT; Yang LY; Lu IH; Cheng WC; Hsu ZR; Chen SH; Lin CY
    mSystems; 2021 Dec; 6(6):e0029921. PubMed ID: 34783578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides.
    Boone K; Wisdom C; Camarda K; Spencer P; Tamerler C
    BMC Bioinformatics; 2021 May; 22(1):239. PubMed ID: 33975547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Medicinal leech antimicrobial peptides lacking toxicity represent a promising alternative strategy to combat antibiotic-resistant pathogens.
    Grafskaia EN; Nadezhdin KD; Talyzina IA; Polina NF; Podgorny OV; Pavlova ER; Bashkirov PV; Kharlampieva DD; Bobrovsky PA; Latsis IA; Manuvera VA; Babenko VV; Trukhan VM; Arseniev AS; Klinov DV; Lazarev VN
    Eur J Med Chem; 2019 Oct; 180():143-153. PubMed ID: 31302447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peptidomics-based identification of an antimicrobial peptide derived from goat milk fermented by Lactobacillus rhamnosus (C25).
    Iram D; Kindarle UA; Sansi MS; Meena S; Puniya AK; Vij S
    J Food Biochem; 2022 Dec; 46(12):e14450. PubMed ID: 36226982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The EnvZ/OmpR Two-Component System Regulates the Antimicrobial Activity of TAT-RasGAP
    Georgieva M; Heinonen T; Hargraves S; Pillonel T; Widmann C; Jacquier N
    Microbiol Spectr; 2022 Jun; 10(3):e0200921. PubMed ID: 35579440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Learning for Novel Antimicrobial Peptide Design.
    Wang C; Garlick S; Zloh M
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33810011
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield.
    Puan SL; Erriah P; Baharudin MMA; Yahaya NM; Kamil WNIWA; Ali MSM; Ahmad SA; Oslan SN; Lim S; Sabri S
    Appl Microbiol Biotechnol; 2023 Sep; 107(18):5569-5593. PubMed ID: 37450018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antimicrobial Peptides and Cationic Nanoparticles: A Broad-Spectrum Weapon to Fight Multi-Drug Resistance Not Only in Bacteria.
    Valenti GE; Alfei S; Caviglia D; Domenicotti C; Marengo B
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.