These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 35078504)

  • 1. Comparative assessment of genes driving cancer and somatic evolution in non-cancer tissues: an update of the Network of Cancer Genes (NCG) resource.
    Dressler L; Bortolomeazzi M; Keddar MR; Misetic H; Sartini G; Acha-Sagredo A; Montorsi L; Wijewardhane N; Repana D; Nulsen J; Goldman J; Pollitt M; Davis P; Strange A; Ambrose K; Ciccarelli FD
    Genome Biol; 2022 Jan; 23(1):35. PubMed ID: 35078504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatic variation in normal tissues: friend or foe of cancer early detection?
    Acha-Sagredo A; Ganguli P; Ciccarelli FD
    Ann Oncol; 2022 Dec; 33(12):1239-1249. PubMed ID: 36162751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovering the drivers of clonal hematopoiesis.
    Pich O; Reyes-Salazar I; Gonzalez-Perez A; Lopez-Bigas N
    Nat Commun; 2022 Jul; 13(1):4267. PubMed ID: 35871184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of driver copy number alterations in diverse cancer types and application in drug repositioning.
    Zhou W; Zhao Z; Wang R; Han Y; Wang C; Yang F; Han Y; Liang H; Qi L; Wang C; Guo Z; Gu Y
    Mol Oncol; 2017 Oct; 11(10):1459-1474. PubMed ID: 28719033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clonal expansion in non-cancer tissues.
    Kakiuchi N; Ogawa S
    Nat Rev Cancer; 2021 Apr; 21(4):239-256. PubMed ID: 33627798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic insights into the interactions between cancer drivers and the tumour immune microenvironment.
    Misetic H; Keddar MR; Jeannon JP; Ciccarelli FD
    Genome Med; 2023 Jun; 15(1):40. PubMed ID: 37277866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A compendium of mutational cancer driver genes.
    Martínez-Jiménez F; Muiños F; Sentís I; Deu-Pons J; Reyes-Salazar I; Arnedo-Pac C; Mularoni L; Pich O; Bonet J; Kranas H; Gonzalez-Perez A; Lopez-Bigas N
    Nat Rev Cancer; 2020 Oct; 20(10):555-572. PubMed ID: 32778778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding oncogenicity of cancer driver genes and mutations in the cancer genomics era.
    Porta-Pardo E; Valencia A; Godzik A
    FEBS Lett; 2020 Dec; 594(24):4233-4246. PubMed ID: 32239503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IDENTIFY CANCER DRIVER GENES THROUGH SHARED MENDELIAN DISEASE PATHOGENIC VARIANTS AND CANCER SOMATIC MUTATIONS.
    Ma M; Wang C; Glicksberg BS; Schadt EE; Li SD; Chen R
    Pac Symp Biocomput; 2017; 22():473-484. PubMed ID: 27896999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of constrained cancer driver genes based on mutation timing.
    Sakoparnig T; Fried P; Beerenwinkel N
    PLoS Comput Biol; 2015 Jan; 11(1):e1004027. PubMed ID: 25569148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oncogenes and tumor suppressor genes: comparative genomics and network perspectives.
    Zhu K; Liu Q; Zhou Y; Tao C; Zhao Z; Sun J; Xu H
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S8. PubMed ID: 26099335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing selection in cancer using the predicted functional impact of cancer mutations. Application to nomination of cancer drivers.
    Reva B
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S8. PubMed ID: 23819556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Somatic Nature of Cancer Allows It to Affect Highly Constrained Genes.
    Ostrow SL; Hershberg R
    Genome Biol Evol; 2016 Jun; 8(5):1614-20. PubMed ID: 27190005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal Patterns of Selection in Cancer and Somatic Tissues.
    Martincorena I; Raine KM; Gerstung M; Dawson KJ; Haase K; Van Loo P; Davies H; Stratton MR; Campbell PJ
    Cell; 2017 Nov; 171(5):1029-1041.e21. PubMed ID: 29056346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NCG 4.0: the network of cancer genes in the era of massive mutational screenings of cancer genomes.
    An O; Pendino V; D'Antonio M; Ratti E; Gentilini M; Ciccarelli FD
    Database (Oxford); 2014; 2014():bau015. PubMed ID: 24608173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CBNA: A control theory based method for identifying coding and non-coding cancer drivers.
    Pham VVH; Liu L; Bracken CP; Goodall GJ; Long Q; Li J; Le TD
    PLoS Comput Biol; 2019 Dec; 15(12):e1007538. PubMed ID: 31790386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Somatic clonal evolution: A selection-centric perspective.
    Scott J; Marusyk A
    Biochim Biophys Acta Rev Cancer; 2017 Apr; 1867(2):139-150. PubMed ID: 28161395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Germline fitness-based scoring of cancer mutations.
    Fischer A; Greenman C; Mustonen V
    Genetics; 2011 Jun; 188(2):383-93. PubMed ID: 21441214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.