These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 35078978)

  • 1. PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis.
    Das D; Paries M; Hobecker K; Gigl M; Dawid C; Lam HM; Zhang J; Chen M; Gutjahr C
    Nat Commun; 2022 Jan; 13(1):477. PubMed ID: 35078978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation of host NH₄⁺ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots.
    Pérez-Tienda J; Corrêa A; Azcón-Aguilar C; Ferrol N
    Plant Physiol Biochem; 2014 Feb; 75():1-8. PubMed ID: 24361504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phosphate starvation response-regulated receptor-like kinase, OsADK1, is required for mycorrhizal symbiosis and phosphate starvation responses.
    Shi J; Zhao B; Jin R; Hou L; Zhang X; Dai H; Yu N; Wang E
    New Phytol; 2022 Dec; 236(6):2282-2293. PubMed ID: 36254112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systemic induction of phosphatidylinositol-based signaling in leaves of arbuscular mycorrhizal rice plants.
    Campo S; San Segundo B
    Sci Rep; 2020 Sep; 10(1):15896. PubMed ID: 32985595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2.
    Zhong Y; Wang Y; Guo J; Zhu X; Shi J; He Q; Liu Y; Wu Y; Zhang L; Lv Q; Mao C
    New Phytol; 2018 Jul; 219(1):135-148. PubMed ID: 29658119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chasing the structures of small molecules in arbuscular mycorrhizal signaling.
    Bucher M; Wegmüller S; Drissner D
    Curr Opin Plant Biol; 2009 Aug; 12(4):500-7. PubMed ID: 19576840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway.
    Gutjahr C; Banba M; Croset V; An K; Miyao A; An G; Hirochika H; Imaizumi-Anraku H; Paszkowski U
    Plant Cell; 2008 Nov; 20(11):2989-3005. PubMed ID: 19033527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis.
    Akiyama K
    Biosci Biotechnol Biochem; 2007 Jun; 71(6):1405-14. PubMed ID: 17587670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling in the arbuscular mycorrhizal symbiosis.
    Harrison MJ
    Annu Rev Microbiol; 2005; 59():19-42. PubMed ID: 16153162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The good, the bad, and the phosphate: regulation of beneficial and detrimental plant-microbe interactions by the plant phosphate status.
    Paries M; Gutjahr C
    New Phytol; 2023 Jul; 239(1):29-46. PubMed ID: 37145847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic diversity for mycorrhizal symbiosis and phosphate transporters in rice.
    Jeong K; Mattes N; Catausan S; Chin JH; Paszkowski U; Heuer S
    J Integr Plant Biol; 2015 Nov; 57(11):969-79. PubMed ID: 26466747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning.
    Breuillin F; Schramm J; Hajirezaei M; Ahkami A; Favre P; Druege U; Hause B; Bucher M; Kretzschmar T; Bossolini E; Kuhlemeier C; Martinoia E; Franken P; Scholz U; Reinhardt D
    Plant J; 2010 Dec; 64(6):1002-17. PubMed ID: 21143680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate Suppression of Arbuscular Mycorrhizal Symbiosis Involves Gibberellic Acid Signaling.
    Nouri E; Surve R; Bapaume L; Stumpe M; Chen M; Zhang Y; Ruyter-Spira C; Bouwmeester H; Glauser G; Bruisson S; Reinhardt D
    Plant Cell Physiol; 2021 Oct; 62(6):959-970. PubMed ID: 34037236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.
    Takeda N; Handa Y; Tsuzuki S; Kojima M; Sakakibara H; Kawaguchi M
    Plant Physiol; 2015 Feb; 167(2):545-57. PubMed ID: 25527715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis.
    Abdallah C; Valot B; Guillier C; Mounier A; Balliau T; Zivy M; van Tuinen D; Renaut J; Wipf D; Dumas-Gaudot E; Recorbet G
    J Proteomics; 2014 Aug; 108():354-68. PubMed ID: 24925269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis.
    Campos-Soriano L; Segundo BS
    Plant Signal Behav; 2011 Apr; 6(4):553-7. PubMed ID: 21422823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved.
    Ferrol N; Azcón-Aguilar C; Pérez-Tienda J
    Plant Sci; 2019 Mar; 280():441-447. PubMed ID: 30824024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neighboring plants divergently modulate effects of loss-of-function in maize mycorrhizal phosphate uptake on host physiology and root fungal microbiota.
    Fabiańska I; Pesch L; Koebke E; Gerlach N; Bucher M
    PLoS One; 2020; 15(6):e0232633. PubMed ID: 32555651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis.
    Javot H; Penmetsa RV; Terzaghi N; Cook DR; Harrison MJ
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1720-5. PubMed ID: 17242358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal
    Xue L; Klinnawee L; Zhou Y; Saridis G; Vijayakumar V; Brands M; Dörmann P; Gigolashvili T; Turck F; Bucher M
    Proc Natl Acad Sci U S A; 2018 Sep; 115(39):E9239-E9246. PubMed ID: 30209216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.