These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 35079074)

  • 1. Similar experimental study on retaining waterproof coal pillar in composite strata mining.
    Wang YQ; Wang X; Zhang JS; Yang BS; Zhu WJ; Wang ZP
    Sci Rep; 2022 Jan; 12(1):1366. PubMed ID: 35079074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Evolution of Fault Permeability and the Retention of Coal (Rock) Pillar under the Mining Conditions of Thick Coal Seam in the Footwall of Large Normal Fault.
    Yin H; Tang R; Xie D; Lang N; Li S; Zhang X; Cheng Y; Wang S; Li A
    ACS Omega; 2023 Jan; 8(4):4187-4195. PubMed ID: 36743042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of particle erosion on mining-induced water inrush hazard of karst collapse pillar.
    Ma D; Wang J; Li Z
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19719-19728. PubMed ID: 31090004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic wave prospecting of water-conducting fractured zones in coal mining.
    Zhao B; He S; Bai K; Lu X; Wang W
    Sci Rep; 2024 Mar; 14(1):7036. PubMed ID: 38528085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rock Damage Model Coupled Stress-Seepage and Its Application in Water Inrush from Faults in Coal Mines.
    Shao J; Zhang W; Wu X; Lei Y; Wu X
    ACS Omega; 2022 Apr; 7(16):13604-13614. PubMed ID: 35559151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breaking law of overburden rock and key mining technology for narrow coal pillar working face in isolated island.
    Feng D; Zhenhua L; Songtao L; Xiaolei L; Guodong L; Xuan F; Hao R; Zhengzheng C
    Sci Rep; 2024 Jun; 14(1):13045. PubMed ID: 38844674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuation law of concentrated stress under coal pillar of close coal seams and its application.
    Kang Q; He F; Yin S; Yang Y
    Sci Rep; 2022 Dec; 12(1):21753. PubMed ID: 36526690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water-inrush mechanism from the head-on working face roof in a Jurassic coal seam in the Ordos Basin.
    Shi L; Qu X; Qiu M; Han J; Zhang W
    PLoS One; 2024; 19(3):e0298399. PubMed ID: 38470875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pressure relief protection effect of different strip widths, dip angles and pillar widths of an underside protective seam.
    Fang S; Zhu H; Huo Y; Zhang Y; Wang H; Li F; Wang X
    PLoS One; 2021; 16(1):e0246199. PubMed ID: 33507939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical research on reasonable shield support capacity in close-multiple coal seams with the coordinated mining: A case study of Qianjiaying coal mine.
    Li Y; Ren Y; Lei X; Wang N; Jin X; Li G
    PLoS One; 2022; 17(10):e0276101. PubMed ID: 36256649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similarity Simulation on the Movement Characteristics of Surrounding Rock and Floor Stress Distribution for Large-Dip Coal Seam.
    Cao W; Liu H; Hang Y; Wang H; Li G
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gray Evaluation of Water Inrush Risk in Deep Mining Floor.
    Qu X; Yu X; Qu X; Qiu M; Gao W
    ACS Omega; 2021 Jun; 6(22):13970-13986. PubMed ID: 34124422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical simulation study on grouting water plugging of flexible isolation layer in coal seam mining.
    Li A; Ji B; Ma Q; Ji Y; Mu Q; Zhang W; Mu P; Li L; Zhao C
    Sci Rep; 2022 Jan; 12(1):875. PubMed ID: 35042919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the damage characteristics of overburden of mining roof in deeply buried coal seam.
    Long T; Hou E; Xie X; Fan Z; Tan E
    Sci Rep; 2022 Jul; 12(1):11141. PubMed ID: 35778594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation and On-Site Detection of the Failure Characteristics of Overlying Strata under the Mining Disturbance of Coal Seams with Thin Bedrock and Thick Alluvium.
    Zhang Q; Guo J; Lu X; Ding K; Yuan R; Wang D
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approach for water-inrush risk assessment of deep coal seam mining: a case study in Xinlongzhuang coal mine.
    Gu Q; Huang Z; Li S; Zeng W; Wu Y; Zhao K
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43163-43176. PubMed ID: 32729037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On strata damage and stress disturbance induced by coal mining based on physical similarity simulation experiments.
    Yang Y; Li Y; Wang L; Wu Y
    Sci Rep; 2023 Sep; 13(1):15458. PubMed ID: 37726312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution mechanism of water-conducting fractures in overburden under the influence of water-rich fault in underground coal mining.
    Zhengzheng C; Xiangqian Y; Zhenhua L; Feng D
    Sci Rep; 2024 Mar; 14(1):5081. PubMed ID: 38429309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overburden failure and water-sand mixture outburst conditions of weakly consolidated overlying strata in Dananhu No.7 coal mine.
    Zhu J; Li W; Teng B; Lu Q; Li D; Li L
    Sci Rep; 2024 Apr; 14(1):8439. PubMed ID: 38600225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boundary quantitative characterization of the top-coal limit equilibrium zone in fully mechanized top-coal caving stope along the strike direction of working face.
    Lang D; Wu X; Wu Y; Xie P; Yan Z; Chen S
    Sci Rep; 2024 Jun; 14(1):14461. PubMed ID: 38914652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.