These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35079785)

  • 1. A Review of Finite Element Models of Ligaments in the Foot and Considerations for Practical Application.
    Zhu J; Forman J
    J Biomech Eng; 2022 Aug; 144(8):. PubMed ID: 35079785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional finite element modeling of ligaments: technical aspects.
    Weiss JA; Gardiner JC; Ellis BJ; Lujan TJ; Phatak NS
    Med Eng Phys; 2005 Dec; 27(10):845-61. PubMed ID: 16085446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The denticulate ligament - Tensile characterisation and finite element micro-scale model of the structure stabilising spinal cord.
    Polak-Kraśna K; Robak-Nawrocka S; Szotek S; Czyż M; Gheek D; Pezowicz C
    J Mech Behav Biomed Mater; 2019 Mar; 91():10-17. PubMed ID: 30529981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the in situ mechanical behavior of ankle ligaments.
    Nie B; Panzer MB; Mane A; Mait AR; Donlon JP; Forman JL; Kent RW
    J Mech Behav Biomed Mater; 2017 Jan; 65():502-512. PubMed ID: 27665085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of Finite Element Modeling in Biomechanical Analysis of Foot Arch Deformation: A Scoping Review.
    Cen X; Song Y; Sun D; Bíró I; Gu Y
    J Biomech Eng; 2023 Jul; 145(7):. PubMed ID: 37043259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint.
    Naghibi Beidokhti H; Janssen D; van de Groes S; Hazrati J; Van den Boogaard T; Verdonschot N
    J Biomech; 2017 Dec; 65():1-11. PubMed ID: 28917580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model.
    Naserkhaki S; Arjmand N; Shirazi-Adl A; Farahmand F; El-Rich M
    J Biomech; 2018 Mar; 70():33-42. PubMed ID: 28549604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics.
    Brolin K; Halldin P
    Spine (Phila Pa 1976); 2004 Feb; 29(4):376-85. PubMed ID: 15094533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative comparison of ligament formulation and pre-strain in finite element analysis of the human lumbar spine.
    Hortin MS; Bowden AE
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1505-18. PubMed ID: 27007776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical modeling of spinal ligaments: finite element analysis of L4-L5 spinal segment.
    Hamidrad S; Abdollahi M; Badali V; Nikkhoo M; Naserkhaki S
    Comput Methods Biomech Biomed Engin; 2021 Dec; 24(16):1807-1818. PubMed ID: 34428998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating ligament laxity in a finite element model for the upper cervical spine.
    Lasswell TL; Cronin DS; Medley JB; Rasoulinejad P
    Spine J; 2017 Nov; 17(11):1755-1764. PubMed ID: 28673824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model.
    Hao Z; Wan C; Gao X; Ji T
    J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of ligament mechanics.
    Weiss JA; Gardiner JC
    Crit Rev Biomed Eng; 2001; 29(3):303-71. PubMed ID: 11730098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A framework for parametric modeling of ankle ligaments to determine the in situ response under gross foot motion.
    Nie B; Panzer MB; Mane A; Mait AR; Donlon JP; Forman JL; Kent RW
    Comput Methods Biomech Biomed Engin; 2016 Sep; 19(12):1254-65. PubMed ID: 26712301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of ligaments and plantar fascia on the foot finite element analysis].
    Tao K; Wang D; Wang C; Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):336-40. PubMed ID: 18610618
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Ramezani M; Klima S; de la Herverie PLC; Campo J; Le Joncour JB; Rouquette C; Scholze M; Hammer N
    Biomed Res Int; 2019; 2019():3973170. PubMed ID: 30729122
    [No Abstract]   [Full Text] [Related]  

  • 17. Deformation and stress distribution of the human foot after plantar ligaments release: a cadaveric study and finite element analysis.
    Liang J; Yang Y; Yu G; Niu W; Wang Y
    Sci China Life Sci; 2011 Mar; 54(3):267-71. PubMed ID: 21416327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of impact loading rate effects on the ligamentous cervical spinal load-partitioning using finite element model of functional spinal unit C2-C3.
    Mustafy T; El-Rich M; Mesfar W; Moglo K
    J Biomech; 2014 Sep; 47(12):2891-903. PubMed ID: 25129167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heel skin stiffness effect on the hind foot biomechanics during heel strike.
    Gu Y; Li J; Ren X; Lake MJ; Zeng Y
    Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligamentous influence in pelvic load distribution.
    Hammer N; Steinke H; Lingslebe U; Bechmann I; Josten C; Slowik V; Böhme J
    Spine J; 2013 Oct; 13(10):1321-30. PubMed ID: 23755919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.