BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 35080074)

  • 1. Designed from Biobased Materials for Recycling: Imine-Based Covalent Adaptable Networks.
    Liguori A; Hakkarainen M
    Macromol Rapid Commun; 2022 Jul; 43(13):e2100816. PubMed ID: 35080074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vanillin-Derived Thermally Reprocessable and Chemically Recyclable Schiff-Base Epoxy Thermosets.
    Subramaniyan S; Bergoglio M; Sangermano M; Hakkarainen M
    Glob Chall; 2023 Apr; 7(4):2200234. PubMed ID: 37020622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Closed-loop recycling of tough epoxy supramolecular thermosets constructed with hyperbranched topological structure.
    Zhang J; Jiang C; Deng G; Luo M; Ye B; Zhang H; Miao M; Li T; Zhang D
    Nat Commun; 2024 Jun; 15(1):4869. PubMed ID: 38849328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital Light Processing 3D Printing of Isosorbide- and Vanillin-Based Ester and Ester-Imine Thermosets: Structure-Property Recyclability Relationships.
    Liguori A; Oliva E; Sangermano M; Hakkarainen M
    ACS Sustain Chem Eng; 2023 Oct; 11(39):14601-14613. PubMed ID: 37799818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spiroborate-Linked Ionic Covalent Adaptable Networks with Rapid Reprocessability and Closed-Loop Recyclability.
    Chen H; Hu Y; Luo C; Lei Z; Huang S; Wu J; Jin Y; Yu K; Zhang W
    J Am Chem Soc; 2023 Apr; 145(16):9112-9117. PubMed ID: 37058550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dually Crosslinked Polymer Networks Incorporating Dynamic Covalent Bonds.
    Hammer L; Van Zee NJ; Nicolaÿ R
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33513741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the Solubility of Imine-Based Covalent Adaptable Networks.
    Schoustra SK; Asadi V; Smulders MMJ
    ACS Appl Polym Mater; 2024 Jan; 6(1):79-89. PubMed ID: 38230365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast-Reprocessing, Postadjustable, Self-Healing Covalent Adaptable Networks with Schiff Base and Diels-Alder Adduct.
    Xu X; Ma S; Wang S; Wang B; Feng H; Li P; Liu Y; Yu Z; Zhu J
    Macromol Rapid Commun; 2022 Jul; 43(13):e2100777. PubMed ID: 35018694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Vitrimers on the Industry of the Future: Chemistry, Properties and Sustainable Forward-Looking Applications.
    Alabiso W; Schlögl S
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32722554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Stimuli-Responsive Dynamic Thermosets through Continuous Development and Improvements in Covalent Adaptable Networks (CANs).
    Podgórski M; Fairbanks BD; Kirkpatrick BE; McBride M; Martinez A; Dobson A; Bongiardina NJ; Bowman CN
    Adv Mater; 2020 May; 32(20):e1906876. PubMed ID: 32057157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal Coordination in Polyimine Covalent Adaptable Networks for Tunable Material Properties and Enhanced Creep Resistance.
    Schoustra SK; Smulders MMJ
    Macromol Rapid Commun; 2023 Mar; 44(5):e2200790. PubMed ID: 36629864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent Adaptable Networks with Tailorable Material Properties Based on Divanillin Polyimines.
    Fanjul-Mosteirín N; Odelius K
    Biomacromolecules; 2024 Apr; 25(4):2348-2357. PubMed ID: 38499398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong and Tough Supramolecular Covalent Adaptable Networks with Room-Temperature Closed-Loop Recyclability.
    Zhang Z; Lei D; Zhang C; Wang Z; Jin Y; Zhang W; Liu X; Sun J
    Adv Mater; 2023 Feb; 35(7):e2208619. PubMed ID: 36367361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalyst-Free Metathesis of Cyclic Acetals and Spirocyclic Acetal Covalent Adaptable Networks.
    Yu S; Wu S; Zhang C; Tang Z; Luo Y; Guo B; Zhang L
    ACS Macro Lett; 2020 Aug; 9(8):1143-1148. PubMed ID: 35653205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biobased Photopolymer Resin for 3D Printing Containing Dynamic Imine Bonds for Fast Reprocessability.
    Stouten J; Schnelting GHM; Hul J; Sijstermans N; Janssen K; Darikwa T; Ye C; Loos K; Voet VSD; Bernaerts KV
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27110-27119. PubMed ID: 37220092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recyclable and Biobased Vitrimers for Carbon Fibre-Reinforced Composites-A Review.
    Tran HTT; Nisha SS; Radjef R; Nikzad M; Bjekovic R; Fox B
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Lignins to Renewable Aromatic Vitrimers based on Vinylogous Urethane.
    Sougrati L; Duval A; Avérous L
    ChemSusChem; 2023 Dec; 16(23):e202300792. PubMed ID: 37486785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renewable Vanillin-Based Thermoplastic Polybutadiene Rubber: High Strength, Recyclability, Self-Welding, Shape Memory, and Antibacterial Properties.
    Yang Y; Xia Z; Huang L; Wu R; Niu Z; Fan W; Dai Q; He J; Bai C
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):47025-47035. PubMed ID: 36214770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of novel vanillin-amine hardeners fully derived from renewable bio feedstocks and their curing with epoxy resins to produce recyclable reprocessable vitrimers.
    Rashid MA; Hasan MN; Kafi MA
    Heliyon; 2023 May; 9(5):e16062. PubMed ID: 37215916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptable Crosslinks in Polymeric Materials: Resolving the Intersection of Thermoplastics and Thermosets.
    Scheutz GM; Lessard JJ; Sims MB; Sumerlin BS
    J Am Chem Soc; 2019 Oct; 141(41):16181-16196. PubMed ID: 31525287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.