These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35080550)

  • 1. Digital microfluidics-like manipulation of electrokinetically preconcentrated bioparticle plugs in continuous-flow.
    Park S; Sabbagh B; Abu-Rjal R; Yossifon G
    Lab Chip; 2022 Feb; 22(4):814-825. PubMed ID: 35080550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Nanochannels Connected in Series for Dynamic Control of Multiple Concentration-Polarization Layers and Preconcentrated Molecule Plugs.
    Sabbagh B; Stolovicki E; Park S; Weitz DA; Yossifon G
    Nano Lett; 2020 Dec; 20(12):8524-8533. PubMed ID: 33226817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvalve-Based Tunability of Electrically Driven Ion Transport through a Microfluidic System with an Ion-Exchange Membrane.
    Sabbagh B; Park S; Yossifon G
    Anal Chem; 2023 Apr; 95(16):6514-6522. PubMed ID: 37039317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrothermal Active Control of Preconcentrated Biomolecule Plugs.
    Park S; Yossifon G
    Anal Chem; 2020 Feb; 92(3):2476-2482. PubMed ID: 31880149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finger-Powered Electro-Digital-Microfluidics.
    Peng C; Ju YS
    Methods Mol Biol; 2017; 1572():293-311. PubMed ID: 28299696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacing microfluidics with information-rich detection systems for cells, bioparticles, and molecules.
    Smithers JP; Hayes MA
    Anal Bioanal Chem; 2022 Jul; 414(16):4575-4589. PubMed ID: 35389095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy.
    Yu J; Wei X; Guo Y; Zhang Z; Rui P; Zhao Y; Zhang W; Shi S; Wang P
    Lab Chip; 2021 Jan; 21(2):284-295. PubMed ID: 33439205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices.
    Adamson DN; Mustafi D; Zhang JX; Zheng B; Ismagilov RF
    Lab Chip; 2006 Sep; 6(9):1178-86. PubMed ID: 16929397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous flow microfluidic demixing of electrolytes by induced charge electrokinetics in structured electrode arrays.
    Leinweber FC; Eijkel JC; Bomer JG; van den Berg A
    Anal Chem; 2006 Mar; 78(5):1425-34. PubMed ID: 16503590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A world-to-chip interface for digital microfluidics.
    Yang H; Luk VN; Abelgawad M; Barbulovic-Nad I; Wheeler AR
    Anal Chem; 2009 Feb; 81(3):1061-7. PubMed ID: 19115860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A digital microfluidic method for multiplexed cell-based apoptosis assays.
    Bogojevic D; Chamberlain MD; Barbulovic-Nad I; Wheeler AR
    Lab Chip; 2012 Feb; 12(3):627-34. PubMed ID: 22159547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic platform for on-demand generation of spatially indexed combinatorial droplets.
    Zec H; Rane TD; Wang TH
    Lab Chip; 2012 Sep; 12(17):3055-62. PubMed ID: 22810353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact Three-Dimensional Digital Microfluidic Platforms with Programmable Contact Charge Electrophoresis Actuation.
    Kim T; Kim J; Kang JW; Kwon SB; Hong J
    Langmuir; 2022 May; 38(18):5759-5764. PubMed ID: 35482441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-Area Electronics-Enabled High-Resolution Digital Microfluidics for Parallel Single-Cell Manipulation.
    Hu S; Ye J; Shi S; Yang C; Jin K; Hu C; Wang D; Ma H
    Anal Chem; 2023 May; 95(17):6905-6914. PubMed ID: 37071892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrothermal based active control of ion transport in a microfluidic device with an ion-permselective membrane.
    Park S; Yossifon G
    Nanoscale; 2018 Jun; 10(24):11633-11641. PubMed ID: 29896609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microprocessing of liquid plugs for bio/chemical analyses.
    Sassa F; Fukuda J; Suzuki H
    Anal Chem; 2008 Aug; 80(16):6206-13. PubMed ID: 18627178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrowetting manipulation for digital microfluidics: creating, transporting, splitting, and merging of droplets.
    Geng H; Feng J; Stabryla LM; Cho SK
    Lab Chip; 2017 Mar; 17(6):1060-1068. PubMed ID: 28217772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Flow Control and Dynamic Analysis in Droplet Microfluidics.
    Shi N; Mohibullah M; Easley CJ
    Annu Rev Anal Chem (Palo Alto Calif); 2021 Jul; 14(1):133-153. PubMed ID: 33979546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital microfluidic operations on micro-electrode dot array architecture.
    Wang G; Teng D; Fan SK
    IET Nanobiotechnol; 2011 Dec; 5(4):152-60. PubMed ID: 22149873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deterministic assembly of chromosome ensembles in a programmable membrane trap array.
    Babahosseini H; Wangsa D; Pabba M; Ried T; Misteli T; DeVoe DL
    Biofabrication; 2021 Jul; 13(4):. PubMed ID: 34233304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.