These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35080551)

  • 1. The influence of silica nanoparticle geometry on the interfacial interactions of organic molecules: a molecular dynamics study.
    Rama P; Abbas Z
    Phys Chem Chem Phys; 2022 Feb; 24(6):3713-3721. PubMed ID: 35080551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial molecular imprinting of Stöber particle surfaces: a simple approach to targeted saccharide adsorption.
    Joshi S; Rao A; Lehmler HJ; Knutson BL; Rankin SE
    J Colloid Interface Sci; 2014 Aug; 428():101-10. PubMed ID: 24910041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions at the silica-peptide interface: the influence of particle size and surface functionality.
    Puddu V; Perry CC
    Langmuir; 2014 Jan; 30(1):227-33. PubMed ID: 24328428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofunctionalization of Silica Nanoparticles with Cell-Penetrating Peptides: Adsorption Mechanism and Binding Energy Estimation.
    Grasso G; Mercuri S; Danani A; Deriu MA
    J Phys Chem B; 2019 Dec; 123(50):10622-10630. PubMed ID: 31790254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface.
    Metin CO; Baran JR; Nguyen QP
    J Nanopart Res; 2012 Nov; 14(11):1246. PubMed ID: 23193372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyl density affects the interaction of fibrinogen with silica nanoparticles at physiological concentration.
    Marucco A; Turci F; O'Neill L; Byrne HJ; Fubini B; Fenoglio I
    J Colloid Interface Sci; 2014 Apr; 419():86-94. PubMed ID: 24491335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles.
    Ovanesyan Z; Aljzmi A; Almusaynid M; Khan A; Valderrama E; Nash KL; Marucho M
    J Colloid Interface Sci; 2016 Jan; 462():325-33. PubMed ID: 26476201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-dependent interaction and resultant structures of silica nanoparticles and lysozyme protein.
    Kumar S; Aswal VK; Callow P
    Langmuir; 2014 Feb; 30(6):1588-98. PubMed ID: 24475981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer and particle adsorption at the PDMS droplet-water interface.
    Prestidge CA; Barnes T; Simovic S
    Adv Colloid Interface Sci; 2004 May; 108-109():105-18. PubMed ID: 15072933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide adsorption on silica nanoparticles: evidence of hydrophobic interactions.
    Puddu V; Perry CC
    ACS Nano; 2012 Jul; 6(7):6356-63. PubMed ID: 22725630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous Rate Constant for Amorphous Silica Nanoparticle Adsorption on Phospholipid Monolayers.
    Vakurov A; Drummond-Brydson R; William N; Sanver D; Bastús N; Moriones OH; Puntes V; Nelson AL
    Langmuir; 2022 May; 38(18):5372-5380. PubMed ID: 35471829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of hydrogen bonding in nanocolloidal amorphous silica particles in electrolyte solutions.
    Jenkins S; Kirk SR; Persson M; Carlen J; Abbas Z
    J Colloid Interface Sci; 2009 Nov; 339(2):351-61. PubMed ID: 19709668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Role of Silica Carrier Curvature for the Unloading of Small Drug Molecules: A Molecular Dynamics Simulation Study.
    Macht M; Becit B; Zahn D
    J Pharm Sci; 2020 Jun; 109(6):2018-2023. PubMed ID: 32173324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of carboxylic acid and ester groups on chromium (VI) binding to functionalized silica/water interfaces studied by second harmonic generation.
    Al-Abadleh HA; Mifflin AL; Bertin PA; Nguyen ST; Geiger FM
    J Phys Chem B; 2005 May; 109(19):9691-702. PubMed ID: 16852168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Submicrometer-sized Pickering emulsions stabilized by silica nanoparticles with adsorbed oleic acid.
    Sadeghpour A; Pirolt F; Glatter O
    Langmuir; 2013 May; 29(20):6004-12. PubMed ID: 23650929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme.
    Vertegel AA; Siegel RW; Dordick JS
    Langmuir; 2004 Aug; 20(16):6800-7. PubMed ID: 15274588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear charge regulation for the deposition of silica nanoparticles on polystyrene spherical surfaces.
    Choi S; Vazquez-Duhalt R; Graeve OA
    J Colloid Interface Sci; 2022 May; 613():747-763. PubMed ID: 35066233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serum Protein Adsorption Enhances Active Leukemia Stem Cell Targeting of Mesoporous Silica Nanoparticles.
    Beck M; Mandal T; Buske C; Lindén M
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18566-18574. PubMed ID: 28525262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.