These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35080551)

  • 21. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of particle functionalization and solution properties on the adsorption of bovine serum albumin and lysozyme onto silica nanoparticles.
    Galdino FE; Picco AS; Sforca ML; Cardoso MB; Loh W
    Colloids Surf B Biointerfaces; 2020 Feb; 186():110677. PubMed ID: 31812075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silica nanoparticles at interfaces modulated by amphiphilic polymer and surfactant.
    Alves de Rezende C; Lee LT; Galembeck F
    Langmuir; 2008 Jul; 24(14):7346-53. PubMed ID: 18547078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the binding modes and dynamics of histidine on fumed silica surfaces by solid-state NMR.
    Swanson HL; Guo C; Cao M; Addison JB; Holland GP
    Phys Chem Chem Phys; 2020 Sep; 22(36):20349-20361. PubMed ID: 32901618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interfacial behavior of cubic liquid crystalline nanoparticles at hydrophilic and hydrophobic surfaces.
    Vandoolaeghe P; Tiberg F; Nylander T
    Langmuir; 2006 Oct; 22(22):9169-74. PubMed ID: 17042525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coverage and disruption of phospholipid membranes by oxide nanoparticles.
    Pera H; Nolte TM; Leermakers FA; Kleijn JM
    Langmuir; 2014 Dec; 30(48):14581-90. PubMed ID: 25390582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coating thickness and coverage effects on the forces between silica nanoparticles in water.
    Salerno KM; Ismail AE; Lane JM; Grest GS
    J Chem Phys; 2014 May; 140(19):194904. PubMed ID: 24852560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interface tension of silica hydroxylated nanoparticle with brine: a combined experimental and molecular dynamics study.
    de Lara LS; Michelon MF; Metin CO; Nguyen QP; Miranda CR
    J Chem Phys; 2012 Apr; 136(16):164702. PubMed ID: 22559499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular dynamics simulation of the spherical electrical double layer of a soft nanoparticle: effect of the surface charge and counterion valence.
    Nedyalkova M; Madurga S; Pisov S; Pastor I; Vilaseca E; Mas F
    J Chem Phys; 2012 Nov; 137(17):174701. PubMed ID: 23145736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Influence of Nanoparticle Shape on Protein Corona Formation.
    Madathiparambil Visalakshan R; González García LE; Benzigar MR; Ghazaryan A; Simon J; Mierczynska-Vasilev A; Michl TD; Vinu A; Mailänder V; Morsbach S; Landfester K; Vasilev K
    Small; 2020 Jun; 16(25):e2000285. PubMed ID: 32406176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoparticles of varying hydrophobicity at the emulsion droplet-water interface: adsorption and coalescence stability.
    Simovic S; Prestidge CA
    Langmuir; 2004 Sep; 20(19):8357-65. PubMed ID: 15350114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle-Protein Systems.
    Yadav I; Kumar S; Aswal VK; Kohlbrecher J
    Langmuir; 2017 Feb; 33(5):1227-1238. PubMed ID: 28079383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insight on Methane Foam Stability and Texture via Adsorption of Surfactants on Oppositely Charged Nanoparticles.
    Doroudian Rad M; Telmadarreie A; Xu L; Dong M; Bryant SL
    Langmuir; 2018 Nov; 34(47):14274-14285. PubMed ID: 30372614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides.
    Braun K; Pochert A; Lindén M; Davoudi M; Schmidtchen A; Nordström R; Malmsten M
    J Colloid Interface Sci; 2016 Aug; 475():161-170. PubMed ID: 27174622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of concentration on specific ion effects at the silica/water interface.
    Azam MS; Darlington A; Gibbs-Davis JM
    J Phys Condens Matter; 2014 Jun; 26(24):244107. PubMed ID: 24861027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption Dynamics of Surface-Modified Silica Nanoparticles at Solid-Liquid Interfaces.
    Khazaei MA; Bastani D; Mohammadi A; Kordzadeh A
    Langmuir; 2022 Oct; 38(41):12421-12431. PubMed ID: 36179319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Histidine adsorption on TiO2 nanoparticles: an integrated spectroscopic, thermodynamic, and molecular-based approach toward understanding nano-bio interactions.
    Mudunkotuwa IA; Grassian VH
    Langmuir; 2014 Jul; 30(29):8751-60. PubMed ID: 24978817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stabilization of weakly charged microparticles using highly charged nanoparticles.
    Herman D; Walz JY
    Langmuir; 2013 May; 29(20):5982-94. PubMed ID: 23594145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of Myoglobin and Corona Formation on Silica Nanoparticles.
    Lee JG; Lannigan K; Shelton WA; Meissner J; Bharti B
    Langmuir; 2020 Dec; 36(47):14157-14165. PubMed ID: 33210541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and Interaction of Nanoparticle-Protein Complexes.
    Kumar S; Yadav I; Aswal VK; Kohlbrecher J
    Langmuir; 2018 May; 34(20):5679-5695. PubMed ID: 29672062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.