These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 35080551)
41. pH-Induced reorientation of cytochrome c on silica nanoparticles. Meissner J; Wu Y; Jestin J; Shelton WA; Findenegg GH; Bharti B Soft Matter; 2019 Jan; 15(3):350-354. PubMed ID: 30468443 [TBL] [Abstract][Full Text] [Related]
42. Lysozyme and bovine serum albumin adsorption on uncoated silica and AlOOH-coated silica particles: the influence of positively and negatively charged oxide surface coatings. Rezwan K; Meier LP; Gauckler LJ Biomaterials; 2005 Jul; 26(21):4351-7. PubMed ID: 15701363 [TBL] [Abstract][Full Text] [Related]
43. pH effects on molecular adsorption and solvation of p-nitrophenol at silica/aqueous interfaces. Woods BL; Walker RA J Phys Chem A; 2013 Jul; 117(29):6224-33. PubMed ID: 23701438 [TBL] [Abstract][Full Text] [Related]
44. pH-responsive controlled release of mesoporous silica nanoparticles capped with Schiff base copolymer gatekeepers: Experiment and molecular dynamics simulation. Peng S; Yuan X; Lin W; Cai C; Zhang L Colloids Surf B Biointerfaces; 2019 Apr; 176():394-403. PubMed ID: 30660963 [TBL] [Abstract][Full Text] [Related]
45. Colloidosomes from the controlled interaction of submicrometer triglyceride droplets and hydrophilic silica nanoparticles. Simovic S; Prestidge CA Langmuir; 2008 Jul; 24(14):7132-7. PubMed ID: 18547083 [TBL] [Abstract][Full Text] [Related]
46. Influence of capillary bridge formation onto the silica nanoparticle interaction studied by grand canonical Monte Carlo simulations. Leroch S; Wendland M Langmuir; 2013 Oct; 29(40):12410-20. PubMed ID: 24015790 [TBL] [Abstract][Full Text] [Related]
47. Silica shell/gold core nanoparticles: correlating shell thickness with the plasmonic red shift upon aggregation. Vanderkooy A; Chen Y; Gonzaga F; Brook MA ACS Appl Mater Interfaces; 2011 Oct; 3(10):3942-7. PubMed ID: 21882833 [TBL] [Abstract][Full Text] [Related]
48. Loss of membrane asymmetry alters the interactions of erythrocytes with engineered silica nanoparticles. Bigdelou P; Vahedi A; Kiosidou E; Farnoud AM Biointerphases; 2020 Jun; 15(4):041001. PubMed ID: 32600052 [TBL] [Abstract][Full Text] [Related]
49. Protein adsorption on a nanoparticle with a nanostructured surface. Canpolat C; Tatlisoz MM Electrophoresis; 2022 Dec; 43(23-24):2324-2333. PubMed ID: 35916328 [TBL] [Abstract][Full Text] [Related]
51. Bridging interactions of proteins with silica nanoparticles: the influence of pH, ionic strength and protein concentration. Bharti B; Meissner J; Klapp SH; Findenegg GH Soft Matter; 2014 Feb; 10(5):718-28. PubMed ID: 24835283 [TBL] [Abstract][Full Text] [Related]
52. Ion-specific effects under confinement: the role of interfacial water. Argyris D; Cole DR; Striolo A ACS Nano; 2010 Apr; 4(4):2035-42. PubMed ID: 20373748 [TBL] [Abstract][Full Text] [Related]
53. Adsorption of lipid liquid crystalline nanoparticles: effects of particle composition, internal structure, and phase behavior. Chang DP; Jankunec M; Barauskas J; Tiberg F; Nylander T Langmuir; 2012 Jul; 28(29):10688-96. PubMed ID: 22725977 [TBL] [Abstract][Full Text] [Related]
54. Interaction of NaOH solutions with silica surfaces. Rimsza JM; Jones RE; Criscenti LJ J Colloid Interface Sci; 2018 Apr; 516():128-137. PubMed ID: 29367063 [TBL] [Abstract][Full Text] [Related]
55. Organically Modified Silica Nanoparticles Interaction with Macrophage Cells: Assessment of Cell Viability on the Basis of Physicochemical Properties. Kumar D; Mutreja I; Keshvan PC; Bhat M; Dinda AK; Mitra S J Pharm Sci; 2015 Nov; 104(11):3943-3951. PubMed ID: 26295279 [TBL] [Abstract][Full Text] [Related]
56. The effect of salts in aqueous media on the formation of the BSA corona on SiO Givens BE; Wilson E; Fiegel J Colloids Surf B Biointerfaces; 2019 Jul; 179():374-381. PubMed ID: 30999116 [TBL] [Abstract][Full Text] [Related]
57. Surface properties of submicrometer silica spheres modified with aminopropyltriethoxysilane and phenyltriethoxysilane. Wu Z; Xiang H; Kim T; Chun MS; Lee K J Colloid Interface Sci; 2006 Dec; 304(1):119-24. PubMed ID: 16989845 [TBL] [Abstract][Full Text] [Related]
58. Adsorption of Fatty Acid Molecules on Amine-Functionalized Silica Nanoparticles: Surface Organization and Foam Stability. Ma Y; Wu Y; Lee JG; He L; Rother G; Fameau AL; Shelton WA; Bharti B Langmuir; 2020 Apr; 36(14):3703-3712. PubMed ID: 32202121 [TBL] [Abstract][Full Text] [Related]
59. Solid phase adsorption of crystal violet lactone on silica nanoparticles to probe mechanochemical surface modification. Ichimura K; Funabiki A; Aoki K; Akiyama H Langmuir; 2008 Jun; 24(13):6470-9. PubMed ID: 18537277 [TBL] [Abstract][Full Text] [Related]
60. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand. Park YC; Paulsen J; Nap RJ; Whitaker RD; Mathiyazhagan V; Song YQ; Hürlimann M; Szleifer I; Wong JY Langmuir; 2014 Jan; 30(3):784-92. PubMed ID: 24393031 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]