These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35080562)

  • 1. An easy to assemble PDMS/CNTs/PANI flexible supercapacitor with high energy-to-power density.
    Balboni RDC; Maron GK; Masteghin MG; Tas MO; Rodrigues LS; Gehrke V; Alano JH; Andreazza R; Carreño NLV; Silva SRP
    Nanoscale; 2022 Feb; 14(6):2266-2276. PubMed ID: 35080562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carboxymethylcellulose-polyaniline/carbon nanotube (CMC-PANI/CNT) film as flexible and highly electrochemical active electrode for supercapacitors.
    Xu H; Cui L; Pan X; An Y; Jin X
    Int J Biol Macromol; 2022 Oct; 219():1135-1145. PubMed ID: 36049565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting the Utilization and Electrochemical Performances of Polyaniline by Forming a Binder-Free Nanoscale Coaxially Coated Polyaniline/Carbon Nanotube/Carbon Fiber Paper Hierarchical 3D Microstructure Composite as a Supercapacitor Electrode.
    Du J; Li Y; Zhong Q; Yang J; Xiao J; Chen D; Wang F; Luo Y; Chen K; Li W
    ACS Omega; 2020 Sep; 5(35):22119-22130. PubMed ID: 32923770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electrodes for Supercapacitors.
    Ben J; Song Z; Liu X; Lü W; Li X
    Nanoscale Res Lett; 2020 Jul; 15(1):151. PubMed ID: 32699960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing High-Performing Symmetric Supercapacitor by Engineering Polyaniline on Steel Mesh Surface via Electrodeposition.
    Mahfoz W; Das HT; Shah SS; Sanhoob M; Anjum A; Al-Betar AR; Aziz MA
    Chem Asian J; 2023 Feb; 18(4):e202201223. PubMed ID: 36576425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO
    Wang J; Dong L; Xu C; Ren D; Ma X; Kang F
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10851-10859. PubMed ID: 29528208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array.
    Li H; Song J; Wang L; Feng X; Liu R; Zeng W; Huang Z; Ma Y; Wang L
    Nanoscale; 2017 Jan; 9(1):193-200. PubMed ID: 27906390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of capacitive performance of polyaniline based hybrid supercapacitor.
    Rahman MM; Joy PM; Uddin MN; Mukhlish MZB; Khan MMR
    Heliyon; 2021 Jul; 7(7):e07407. PubMed ID: 34286117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polypyrrole/Carbon Nanotube Freestanding Electrode with Excellent Electrochemical Properties for High-Performance All-Solid-State Supercapacitors.
    Parayangattil Jyothibasu J; Chen MZ; Lee RH
    ACS Omega; 2020 Mar; 5(12):6441-6451. PubMed ID: 32258879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible core/shelled PPy@PANI nanotube porous films for hybrid supercapacitors.
    Zhang G; Zhang J; Li W; Wang J; Li X
    Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34700312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Growth of a High-Performance All-Solid-State Electrode for Flexible Supercapacitors Based on a PANI/CNT/EVA Composite.
    Guan X; Kong D; Huang Q; Cao L; Zhang P; Lin H; Lin Z; Yuan H
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Performance of All-Solid-State Flexible Supercapacitor Based on the Stress-Compensation Effect.
    Wang DY; Dong ZQ; Zhang S; Hu TY; Zhang XT; Li X; Li F
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1687-1693. PubMed ID: 33404434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Aqueous Exfoliation of WO
    Szkoda M; Zarach Z; Trzciński K; Nowak AP
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33348911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Fabrication of Polyaniline/Pbs Nanocomposite for High-Performance Supercapacitor Application.
    Gamal A; Shaban M; BinSabt M; Moussa M; Ahmed AM; Rabia M; Hamdy H
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of distribution, interface property and density of hydrogel-embedded vertically aligned carbon nanotube arrays on the properties of a flexible solid state supercapacitor.
    Zhu Q; Yuan X; Zhu Y; Ni J; Zhang X; Yang Z
    Nanotechnology; 2018 May; 29(19):195405. PubMed ID: 29465417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Growth of the Ni
    Liu X; Wang J; Yang G
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20688-20695. PubMed ID: 29807419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nickel cobaltite nanowire arrays grown on nitrogen-doped carbon nanotube fiber fabric for high-performance flexible supercapacitors.
    Liang Y; Luo X; Zhang Y; Yang L; Hu Z; Zhu M
    J Colloid Interface Sci; 2023 Sep; 645():391-399. PubMed ID: 37156147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free-standing reduced graphene oxide/carboxymethylcellulose-polyaniline (RGO/CMC-PANI) hybrid film electrode for high-performance asymmetric supercapacitor device.
    Xu H; Lei Z; Xu M; Zhu J; Song X; Jin X
    Int J Biol Macromol; 2023 May; 236():123934. PubMed ID: 36894062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti
    Patil AM; Kitiphatpiboon N; An X; Hao X; Li S; Hao X; Abudula A; Guan G
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52749-52762. PubMed ID: 33185100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyaniline Nanotubes/Carbon Cloth Composite Electrode by Thermal Acid Doping for High-Performance Supercapacitors.
    Hui J; Wei D; Chen J; Yang Z
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31835655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.