BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35080620)

  • 1. LeafNet: a tool for segmenting and quantifying stomata and pavement cells.
    Li S; Li L; Fan W; Ma S; Zhang C; Kim JC; Wang K; Russinova E; Zhu Y; Zhou Y
    Plant Cell; 2022 Mar; 34(4):1171-1188. PubMed ID: 35080620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. StomataCounter: a neural network for automatic stomata identification and counting.
    Fetter KC; Eberhardt S; Barclay RS; Wing S; Keller SR
    New Phytol; 2019 Aug; 223(3):1671-1681. PubMed ID: 31059134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LSM-W
    Zubairova US; Verman PY; Oshchepkova PA; Elsukova AS; Doroshkov AV
    BMC Syst Biol; 2019 Mar; 13(Suppl 1):22. PubMed ID: 30836965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A stomata classification and detection system in microscope images of maize cultivars.
    Aono AH; Nagai JS; Dickel GDSM; Marinho RC; de Oliveira PEAM; Papa JP; Faria FA
    PLoS One; 2021; 16(10):e0258679. PubMed ID: 34695146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. StomataScorer: a portable and high-throughput leaf stomata trait scorer combined with deep learning and an improved CV model.
    Liang X; Xu X; Wang Z; He L; Zhang K; Liang B; Ye J; Shi J; Wu X; Dai M; Yang W
    Plant Biotechnol J; 2022 Mar; 20(3):577-591. PubMed ID: 34717024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Learning-Based Method for Automatic Assessment of Stomatal Index in Wheat Microscopic Images of Leaf Epidermis.
    Zhu C; Hu Y; Mao H; Li S; Li F; Zhao C; Luo L; Liu W; Yuan X
    Front Plant Sci; 2021; 12():716784. PubMed ID: 34539710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency.
    Papanatsiou M; Amtmann A; Blatt MR
    J Exp Bot; 2017 Apr; 68(9):2309-2315. PubMed ID: 28369641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological Analysis of Leaf Epidermis Pavement Cells with PaCeQuant.
    Möller B; Poeschl Y; Klemm S; Bürstenbinder K
    Methods Mol Biol; 2019; 1992():329-349. PubMed ID: 31148049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics.
    Möller B; Poeschl Y; Plötner R; Bürstenbinder K
    Plant Physiol; 2017 Nov; 175(3):998-1017. PubMed ID: 28931626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomatal development in the context of epidermal tissues.
    Torii KU
    Ann Bot; 2021 Jul; 128(2):137-148. PubMed ID: 33877316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-scale modelling of transpiration from stomata via the leaf boundary layer.
    Defraeye T; Derome D; Verboven P; Carmeliet J; Nicolai B
    Ann Bot; 2014 Sep; 114(4):711-23. PubMed ID: 24510217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.
    Akita K; Higaki T; Kutsuna N; Hasezawa S
    Plant Signal Behav; 2015; 10(5):e1024396. PubMed ID: 26039484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled Development of Salt Glands, Stomata, and Pavement Cells in
    Gao Y; Zhao B; Jiao X; Chen M; Wang B; Yuan F
    Front Plant Sci; 2021; 12():745422. PubMed ID: 34956255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. User-friendly assessment of pavement cell shape features with PaCeQuant: Novel functions and tools.
    Poeschl Y; Möller B; Müller L; Bürstenbinder K
    Methods Cell Biol; 2020; 160():349-363. PubMed ID: 32896327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Transfer Learning-Based Multi-Object Detection for Plant Stomata Phenotypic Traits Intelligent Recognition.
    Yang XH; Xi ZJ; Li JP; Feng XL; Zhu XH; Guo SY; Song CP
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):321-329. PubMed ID: 34941519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Ecological adaptability of leaf epidermis of erosion-resistant plants in hilly-gully area of Loess Plateau, Northwest China].
    Miao F; Du HD; Qin CP; Jiao JY
    Ying Yong Sheng Tai Xue Bao; 2012 Oct; 23(10):2655-62. PubMed ID: 23359923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated estimation of stomatal number and aperture in haskap (Lonicera caerulea L.).
    Meng X; Nakano A; Hoshino Y
    Planta; 2023 Sep; 258(4):77. PubMed ID: 37673805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal allocation of leaf epidermal area for gas exchange.
    de Boer HJ; Price CA; Wagner-Cremer F; Dekker SC; Franks PJ; Veneklaas EJ
    New Phytol; 2016 Jun; 210(4):1219-28. PubMed ID: 26991124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales.
    Rudall PJ; Bateman RM
    Biol Rev Camb Philos Soc; 2019 Jun; 94(3):1179-1194. PubMed ID: 30714286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum.
    Bheemanahalli R; Wang C; Bashir E; Chiluwal A; Pokharel M; Perumal R; Moghimi N; Ostmeyer T; Caragea D; Jagadish SVK
    Plant Physiol; 2021 Jul; 186(3):1562-1579. PubMed ID: 33856488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.