These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 35080640)
1. [Use of artificial intelligence in screening for diabetic retinopathy at a tertiary diabetes center]. Paul S; Tayar A; Morawiec-Kisiel E; Bohl B; Großjohann R; Hunfeld E; Busch M; Pfeil JM; Dähmcke M; Brauckmann T; Eilts S; Bründer MC; Grundel M; Grundel B; Tost F; Kuhn J; Reindel J; Kerner W; Stahl A Ophthalmologie; 2022 Jul; 119(7):705-713. PubMed ID: 35080640 [TBL] [Abstract][Full Text] [Related]
2. Diagnostic Accuracy of Automated Diabetic Retinopathy Image Assessment Softwares: IDx-DR and Medios Artificial Intelligence. Grzybowski A; Rao DP; Brona P; Negiloni K; Krzywicki T; Savoy FM Ophthalmic Res; 2023; 66(1):1286-1292. PubMed ID: 37757777 [TBL] [Abstract][Full Text] [Related]
3. Head to head comparison of diagnostic performance of three non-mydriatic cameras for diabetic retinopathy screening with artificial intelligence. Doğan ME; Bilgin AB; Sari R; Bulut M; Akar Y; Aydemir M Eye (Lond); 2024 Jun; 38(9):1694-1701. PubMed ID: 38467864 [TBL] [Abstract][Full Text] [Related]
4. Handheld fundus camera performance, image quality and outcomes of diabetic retinopathy grading in a pilot screening study. Kubin AM; Wirkkala J; Keskitalo A; Ohtonen P; Hautala N Acta Ophthalmol; 2021 Dec; 99(8):e1415-e1420. PubMed ID: 33724706 [TBL] [Abstract][Full Text] [Related]
5. Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera. Kubin AM; Huhtinen P; Ohtonen P; Keskitalo A; Wirkkala J; Hautala N Ann Med; 2024 Dec; 56(1):2352018. PubMed ID: 38738798 [TBL] [Abstract][Full Text] [Related]
6. Sensitivity and Specificity of Smartphone-Based Retinal Imaging for Diabetic Retinopathy: A Comparative Study. Sengupta S; Sindal MD; Baskaran P; Pan U; Venkatesh R Ophthalmol Retina; 2019 Feb; 3(2):146-153. PubMed ID: 31014763 [TBL] [Abstract][Full Text] [Related]
7. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System. van der Heijden AA; Abramoff MD; Verbraak F; van Hecke MV; Liem A; Nijpels G Acta Ophthalmol; 2018 Feb; 96(1):63-68. PubMed ID: 29178249 [TBL] [Abstract][Full Text] [Related]
8. Comparison of early diabetic retinopathy staging in asymptomatic patients between autonomous AI-based screening and human-graded ultra-widefield colour fundus images. Sedova A; Hajdu D; Datlinger F; Steiner I; Neschi M; Aschauer J; Gerendas BS; Schmidt-Erfurth U; Pollreisz A Eye (Lond); 2022 Mar; 36(3):510-516. PubMed ID: 35132211 [TBL] [Abstract][Full Text] [Related]
10. Analysis and Comparison of Two Artificial Intelligence Diabetic Retinopathy Screening Algorithms in a Pilot Study: IDx-DR and Retinalyze. Grzybowski A; Brona P J Clin Med; 2021 May; 10(11):. PubMed ID: 34071990 [TBL] [Abstract][Full Text] [Related]
11. Validation of Artificial Intelligence Algorithm in the Detection and Staging of Diabetic Retinopathy through Fundus Photography: An Automated Tool for Detection and Grading of Diabetic Retinopathy. Pawar B; Lobo SN; Joseph M; Jegannathan S; Jayraj H Middle East Afr J Ophthalmol; 2021; 28(2):81-86. PubMed ID: 34759664 [TBL] [Abstract][Full Text] [Related]
12. Assessment of diabetic retinopathy using two ultra-wide-field fundus imaging systems, the Clarus® and Optos™ systems. Hirano T; Imai A; Kasamatsu H; Kakihara S; Toriyama Y; Murata T BMC Ophthalmol; 2018 Dec; 18(1):332. PubMed ID: 30572870 [TBL] [Abstract][Full Text] [Related]
13. Diabetic Retinopathy Telemedicine Outcomes With Artificial Intelligence-Based Image Analysis, Reflex Dilation, and Image Overread. Mehra AA; Softing A; Guner MK; Hodge DO; Barkmeier AJ Am J Ophthalmol; 2022 Dec; 244():125-132. PubMed ID: 35970206 [TBL] [Abstract][Full Text] [Related]
14. Fred Hollows lecture: digital screening for eye disease. Constable IJ; Yogesan K; Eikelboom R; Barry C; Cuypers M Clin Exp Ophthalmol; 2000 Jun; 28(3):129-32. PubMed ID: 10981779 [TBL] [Abstract][Full Text] [Related]
15. Effectiveness and safety of screening for diabetic retinopathy with two nonmydriatic digital images compared with the seven standard stereoscopic photographic fields. Boucher MC; Gresset JA; Angioi K; Olivier S Can J Ophthalmol; 2003 Dec; 38(7):557-68. PubMed ID: 14740797 [TBL] [Abstract][Full Text] [Related]
16. Digital fundus image grading with the non-mydriatic Visucam(PRO NM) versus the FF450(plus) camera in diabetic retinopathy. Neubauer AS; Rothschuh A; Ulbig MW; Blum M Acta Ophthalmol; 2008 Mar; 86(2):177-82. PubMed ID: 17944975 [TBL] [Abstract][Full Text] [Related]
17. Diagnostic Accuracy of Hand-Held Fundus Camera and Artificial Intelligence in Diabetic Retinopathy Screening. Tomić M; Vrabec R; Hendelja Đ; Kolarić V; Bulum T; Rahelić D Biomedicines; 2023 Dec; 12(1):. PubMed ID: 38255141 [TBL] [Abstract][Full Text] [Related]
18. EyeArt artificial intelligence analysis of diabetic retinopathy in retinal screening events. Vought R; Vought V; Shah M; Szirth B; Bhagat N Int Ophthalmol; 2023 Dec; 43(12):4851-4859. PubMed ID: 37847478 [TBL] [Abstract][Full Text] [Related]
19. Cross-Camera External Validation for Artificial Intelligence Software in Diagnosis of Diabetic Retinopathy. Tsai MJ; Hsieh YT; Tsai CH; Chen M; Hsieh AT; Tsai CW; Chen ML J Diabetes Res; 2022; 2022():5779276. PubMed ID: 35308093 [TBL] [Abstract][Full Text] [Related]
20. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital. Liu R; Li Q; Xu F; Wang S; He J; Cao Y; Shi F; Chen X; Chen J Biomed Eng Online; 2022 Jul; 21(1):47. PubMed ID: 35859144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]