These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35080693)

  • 1. Measuring flow speeds in natural waters by training an artificial neural network to analyze high-frequency flow-induced vibrations of tethered floats.
    Hansen TF
    Environ Monit Assess; 2022 Jan; 194(2):129. PubMed ID: 35080693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing and Quantifying Oceanic Motion.
    Rossby T
    Ann Rev Mar Sci; 2016; 8():35-57. PubMed ID: 26253271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time conversion of inertial measurement unit data to ankle joint angles using deep neural networks.
    Senanayake D; Halgamuge S; Ackland DC
    J Biomech; 2021 Aug; 125():110552. PubMed ID: 34237661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An artificial neural network to model response of a radiotherapy beam monitoring system.
    Cho YB; Farrokhkish M; Norrlinger B; Heaton R; Jaffray D; Islam M
    Med Phys; 2020 Apr; 47(4):1983-1994. PubMed ID: 31955428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying deep neural networks and inertial measurement unit in recognizing irregular walking differences in the real world.
    Hu B; Li S; Chen Y; Kavi R; Coppola S
    Appl Ergon; 2021 Oct; 96():103414. PubMed ID: 34087702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of Knee Joint Angle Using Textile Capacitive Sensor and Artificial Neural Network Implementing with Three Shoe Types at Two Gait Speeds: A Preliminary Investigation.
    Chhoeum V; Kim Y; Min SD
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical generation of training sets for measuring NO3(-), NH4(+) and major ions in natural waters using an ion selective electrode array.
    Mueller AV; Hemond HF
    Environ Sci Process Impacts; 2016 May; 18(5):590-9. PubMed ID: 27140537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-based data augmentation for user-independent fatigue estimation.
    Jiang Y; Malliaras P; Chen B; Kulić D
    Comput Biol Med; 2021 Oct; 137():104839. PubMed ID: 34520991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hand Gesture Recognition Using Single Patchable Six-Axis Inertial Measurement Unit via Recurrent Neural Networks.
    Valarezo Añazco E; Han SJ; Kim K; Lopez PR; Kim TS; Lee S
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using artificial bat sonar neural networks for complex pattern recognition: recognizing faces and the speed of a moving target.
    Dror IE; Florer FL; Rios D; Zagaeski M
    Biol Cybern; 1996 Apr; 74(4):331-8. PubMed ID: 8936384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of lower limb joint angles and moments during gait using artificial neural networks.
    Mundt M; Thomsen W; Witter T; Koeppe A; David S; Bamer F; Potthast W; Markert B
    Med Biol Eng Comput; 2020 Jan; 58(1):211-225. PubMed ID: 31823114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparison of Three Neural Network Approaches for Estimating Joint Angles and Moments from Inertial Measurement Units.
    Mundt M; Johnson WR; Potthast W; Markert B; Mian A; Alderson J
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the outlet flow temperature in a flat plate solar collector using artificial neural network.
    Shafiey Dehaj M; Zamani Mohiabadi M; Hosseini SMS
    Environ Monit Assess; 2020 Nov; 192(12):770. PubMed ID: 33215263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Lower Extremity Multi-Joint Angles during Overground Walking by Using a Single IMU with a Low Frequency Based on an LSTM Recurrent Neural Network.
    Sung J; Han S; Park H; Cho HM; Hwang S; Park JW; Youn I
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Soft Sensor for Flow Estimation in Water Supply Systems Using Artificial Neural Networks.
    Lima RPG; Mauricio Villanueva JM; Gomes HP; Flores TKS
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the Vibration Characteristics of a Leaf Spring System Using Artificial Neural Networks.
    Çetinkaya MB; İşci M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the Classification Performance of Underwater Sonar Image Classification Based on Convolutional Neural Networks for Detecting a Submerged Human Body.
    Nguyen HT; Lee EH; Lee S
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Study of Structural Anomaly Diagnosis Based on ANN Model Using Random Displacement and Acceleration Responses with Incomplete Measurements.
    Ruan ZG; Ying ZG
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.