These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35080706)

  • 1. Testing Precision Limits of Neural Network-Based Quality Control Metrics in High-Throughput Digital Microscopy.
    Calderon CP; Ripple DC; Srinivasan C; Ma Y; Carrier MJ; Randolph TW; O'Connor TF
    Pharm Res; 2022 Feb; 39(2):263-279. PubMed ID: 35080706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Convolutional Neural Network Analysis of Flow Imaging Microscopy Data to Classify Subvisible Particles in Protein Formulations.
    Calderon CP; Daniels AL; Randolph TW
    J Pharm Sci; 2018 Apr; 107(4):999-1008. PubMed ID: 29269269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Features in Backgrounds of Microscopy Images Introduce Biases in Machine Learning Analyses.
    Greenblott DN; Johann F; Snell JR; Gieseler H; Calderon CP; Randolph TW
    J Pharm Sci; 2024 May; 113(5):1177-1189. PubMed ID: 38484874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Machine Learning and Backgrounded Membrane Imaging: A Case Study in Comparing and Classifying Different Types of Biopharmaceutically Relevant Particles.
    Calderon CP; Krhač Levačić A; Helbig C; Wuchner K; Menzen T
    J Pharm Sci; 2022 Sep; 111(9):2422-2434. PubMed ID: 35661758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image Classification of Degraded Polysorbate, Protein and Silicone Oil Sub-Visible Particles Detected by Flow-Imaging Microscopy in Biopharmaceuticals Using a Convolutional Neural Network Model.
    Fedorowicz FM; Chalus P; Kirschenbühler K; Drewes S; Koulov A
    J Pharm Sci; 2023 Dec; 112(12):3099-3108. PubMed ID: 37422283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning approaches to root cause analysis, characterization, and monitoring of subvisible particles in monoclonal antibody formulations.
    Greenblott DN; Zhang J; Calderon CP; Randolph TW
    Biotechnol Bioeng; 2022 Dec; 119(12):3596-3611. PubMed ID: 36124935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utility of Three Flow Imaging Microscopy Instruments for Image Analysis in Evaluating four Types of Subvisible Particle in Biopharmaceuticals.
    Nishiumi H; Deiringer N; Krause N; Yoneda S; Torisu T; Menzen T; Friess W; Uchiyama S
    J Pharm Sci; 2022 Nov; 111(11):3017-3028. PubMed ID: 35948157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow Microscopy Imaging Is Sensitive to Characteristics of Subvisible Particles in Peginesatide Formulations Associated With Severe Adverse Reactions.
    Daniels AL; Randolph TW
    J Pharm Sci; 2018 May; 107(5):1313-1321. PubMed ID: 29409840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Identification of the Stress Sources of Protein Aggregates Using Flow Imaging Microscopy Images.
    Gambe-Gilbuena A; Shibano Y; Krayukhina E; Torisu T; Uchiyama S
    J Pharm Sci; 2020 Jan; 109(1):614-623. PubMed ID: 31669608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning and statistical analyses for extracting and characterizing "fingerprints" of antibody aggregation at container interfaces from flow microscopy images.
    Daniels AL; Calderon CP; Randolph TW
    Biotechnol Bioeng; 2020 Nov; 117(11):3322-3335. PubMed ID: 32667683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise Quantitative Analysis of Cell Targeting by Particle-Based Agents Using Imaging Flow Cytometry and Convolutional Neural Network.
    Mochalova EN; Kotov IA; Rozenberg JM; Nikitin MP
    Cytometry A; 2020 Mar; 97(3):279-287. PubMed ID: 31809002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards quantification and differentiation of protein aggregates and silicone oil droplets in the low micrometer and submicrometer size range by using oil-immersion flow imaging microscopy and convolutional neural networks.
    Umar M; Krause N; Hawe A; Simmel F; Menzen T
    Eur J Pharm Biopharm; 2021 Dec; 169():97-102. PubMed ID: 34597817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing the U-Net size for practical scenarios: Virus recognition in electron microscopy images.
    Matuszewski DJ; Sintorn IM
    Comput Methods Programs Biomed; 2019 Sep; 178():31-39. PubMed ID: 31416558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image Analysis Algorithm-Based Platform for Determining Micron and Higher Aggregate Size Distribution of Therapeutic IgG Using Brightfield and Fluorescence Microscope Images.
    Sreenivasan S; Sonawat D; Rathore AS
    Pharm Res; 2021 Oct; 38(10):1747-1763. PubMed ID: 34664205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ImageDataExtractor: A Tool To Extract and Quantify Data from Microscopy Images.
    Mukaddem KT; Beard EJ; Yildirim B; Cole JM
    J Chem Inf Model; 2020 May; 60(5):2492-2509. PubMed ID: 31714792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human peripheral blood leukocyte classification method based on convolutional neural network and data augmentation.
    Wang Y; Cao Y
    Med Phys; 2020 Jan; 47(1):142-151. PubMed ID: 31691975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intelligent classification of platelet aggregates by agonist type.
    Zhou Y; Yasumoto A; Lei C; Huang CJ; Kobayashi H; Wu Y; Yan S; Sun CW; Yatomi Y; Goda K
    Elife; 2020 May; 9():. PubMed ID: 32393438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing Silicone Oil-Induced Protein Aggregation with Stimulated Raman Scattering Imaging.
    Wong B; Zhao X; Su Y; Ouyang H; Rhodes T; Xu W; Xi H; Fu D
    Mol Pharm; 2023 Aug; 20(8):4268-4276. PubMed ID: 37382286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate Prediction of Biological Assays with High-Throughput Microscopy Images and Convolutional Networks.
    Hofmarcher M; Rumetshofer E; Clevert DA; Hochreiter S; Klambauer G
    J Chem Inf Model; 2019 Mar; 59(3):1163-1171. PubMed ID: 30840449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backgrounded Membrane Imaging (BMI) for High-Throughput Characterization of Subvisible Particles During Biopharmaceutical Drug Product Development.
    Helbig C; Ammann G; Menzen T; Friess W; Wuchner K; Hawe A
    J Pharm Sci; 2020 Jan; 109(1):264-276. PubMed ID: 30914272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.