BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35080729)

  • 21. Influence of Typha domingensis in the removal of high P concentrations from water.
    Di Luca GA; Maine MA; Mufarrege MM; Hadad HR; Bonetto CA
    Chemosphere; 2015 Nov; 138():405-11. PubMed ID: 26149856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptability of Typha domingensis to high pH and salinity.
    Mufarrege MM; Di Luca GA; Hadad HR; Maine MA
    Ecotoxicology; 2011 Mar; 20(2):457-65. PubMed ID: 21287266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury species accumulation and distribution in Typha domingensis under real field conditions (Almadén, Spain).
    Lominchar MÁ; Sierra MJ; Jiménez-Moreno M; Guirado M; Martín-Doimeadios RCR; Millán R
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3138-3144. PubMed ID: 29644609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Foliar architecture and physio-biochemical plasticity determines survival of Typha domingensis pers. Ecotypes in nickel and salt affected soil.
    Akhter N; Aqeel M; Hameed M; Sakit Alhaithloul HA; Alghanem SM; Shahnaz MM; Hashem M; Alamri S; Khalid N; Al-Zoubi OM; Iqbal MF; Masood T; Noman A
    Environ Pollut; 2021 Oct; 286():117316. PubMed ID: 33990051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ability of Typha domingensis to accumulate and tolerate high concentrations of Cr, Ni, and Zn.
    Mufarrege MM; Hadad HR; Di Luca GA; Maine MA
    Environ Sci Pollut Res Int; 2015 Jan; 22(1):286-92. PubMed ID: 25062549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile.
    Fawzy MA; Badr Nel-S; El-Khatib A; Abo-El-Kassem A
    Environ Monit Assess; 2012 Mar; 184(3):1753-71. PubMed ID: 21562793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.
    Chandra R; Yadav S
    Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.
    Li J; Yu H; Luan Y
    Int J Environ Res Public Health; 2015 Nov; 12(12):14958-73. PubMed ID: 26703632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cadmium accumulation by Phragmites australis and Iris pseudacorus from stormwater in floating treatment wetlands microcosms: Insights into plant tolerance and utility for phytoremediation.
    Mohsin M; Nawrot N; Wojciechowska E; Kuittinen S; Szczepańska K; Dembska G; Pappinen A
    J Environ Manage; 2023 Apr; 331():117339. PubMed ID: 36669313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Subsurface flow constructed wetlands for treating of simulated cadmium ions-wastewater with presence of Canna indica and Typha domingensis.
    Faisal AAH; Taha DS; Hassan WH; Lakhera SK; Ansar S; Pradhan S
    Chemosphere; 2023 Oct; 338():139469. PubMed ID: 37442380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term study of Cr, Ni, Zn, and P distribution in Typha domingensis growing in a constructed wetland.
    Hadad HR; Mufarrege MLM; Di Luca GA; Maine MA
    Environ Sci Pollut Res Int; 2018 Jun; 25(18):18130-18137. PubMed ID: 29691750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short-term accumulation of atrazine by three plants from a wetland model system.
    Cejudo-Espinosa E; Ramos-Valdivia AC; Esparza-García F; Moreno-Casasola P; Rodriguez-Vazquez R
    Arch Environ Contam Toxicol; 2009 Feb; 56(2):201-8. PubMed ID: 18654811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrogen and phosphorus removal and Typha domingensis tolerance in a floating treatment wetland.
    Di Luca GA; Mufarrege MM; Hadad HR; Maine MA
    Sci Total Environ; 2019 Feb; 650(Pt 1):233-240. PubMed ID: 30196224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytoremediation of heavy metals and total petroleum hydrocarbon and nutrients enhancement of Typha latifolia in petroleum secondary effluent for biomass growth.
    Ahmad A
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):5777-5786. PubMed ID: 34431049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Root growth and nutrient removal of Typha domingensis and Schoenoplectus californicus over the period of plant establishment in a constructed floating wetland.
    Rigotti JA; Paqualini JP; Rodrigues LR
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8927-8935. PubMed ID: 33410026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The fate of arsenic, cadmium and lead in Typha latifolia: a case study on the applicability of micro-PIXE in plant ionomics.
    Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Regvar M; Pelicon P; Schröder P
    J Hazard Mater; 2013 Mar; 248-249():371-8. PubMed ID: 23416480
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phytoremediation potential of Cd and Zn by wetland plants, Colocasia esculenta L. Schott., Cyperus malaccensis Lam. and Typha angustifolia L. grown in hydroponics.
    Chayapan P; Kruatrachue M; Meetam M; Pokethitiyook P
    J Environ Biol; 2015 Sep; 36(5):1179-83. PubMed ID: 26521563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioturbation effects on bioaccumulation of cadmium in the wetland plant Typha latifolia: A nature-based experiment.
    Hoang TK; Probst A; Orange D; Gilbert F; Elger A; Kallerhoff J; Laurent F; Bassil S; Duong TT; Gerino M
    Sci Total Environ; 2018 Mar; 618():1284-1297. PubMed ID: 29132718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cadmium Accumulation and Tolerance in Seven Ornamental Willow Genotypes.
    Yang W; Wu F; Ding Z; Zhang X; Zhao F; Wang Y; Yang X
    Bull Environ Contam Toxicol; 2018 Nov; 101(5):644-650. PubMed ID: 30368573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron plaque formation in the roots of Pistia stratiotes L.: importance in phytoremediation of cadmium.
    Singha KT; Sebastian A; Prasad MNV
    Int J Phytoremediation; 2019; 21(2):120-128. PubMed ID: 30729796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.