These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35080729)

  • 41. Iron plaque formation in the roots of Pistia stratiotes L.: importance in phytoremediation of cadmium.
    Singha KT; Sebastian A; Prasad MNV
    Int J Phytoremediation; 2019; 21(2):120-128. PubMed ID: 30729796
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Removal and accumulation of As, Cd and Cr by Typha latifolia.
    Leura-Vicencio A; Alonso-Castro AJ; Carranza-Álvarez C; Loredo-Portales R; Alfaro-De la Torre MC; García-De la Cruz RF
    Bull Environ Contam Toxicol; 2013 Jun; 90(6):650-3. PubMed ID: 23400863
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Physiological response of Conyza Canadensis to cadmium stress monitored by Fourier transform infrared spectroscopy and cadmium accumulation.
    Yu S; Sheng L; Mao H; Huang X; Luo L; Li Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():118007. PubMed ID: 31923788
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland.
    Hadad HR; Mufarrege MM; Pinciroli M; Di Luca GA; Maine MA
    Arch Environ Contam Toxicol; 2010 Apr; 58(3):666-75. PubMed ID: 20041323
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail (Typha angustifolia L.).
    Duman F; Urey E; Koca FD
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17886-96. PubMed ID: 26162443
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sustainability of a constructed wetland faced with a depredation event.
    Maine MA; Hadad HR; Sánchez GC; Mufarrege MM; Di Luca GA; Caffaratti SE; Pedro MC
    J Environ Manage; 2013 Oct; 128():1-6. PubMed ID: 23694854
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.
    Klink A
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accumulation of mercury in Typha domingensis under field conditions.
    Lominchar MA; Sierra MJ; Millán R
    Chemosphere; 2015 Jan; 119():994-999. PubMed ID: 25303659
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water.
    Shahid MJ; Ali S; Shabir G; Siddique M; Rizwan M; Seleiman MF; Afzal M
    Chemosphere; 2020 Mar; 243():125353. PubMed ID: 31765899
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.
    Manousaki E; Kalogerakis N
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pre-aeration of the rhizosphere offers potential for phytoremediation of heavy metal-contaminated wetlands.
    Xin J; Tang J; Liu Y; Zhang Y; Tian R
    J Hazard Mater; 2019 Jul; 374():437-446. PubMed ID: 31071651
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lead accumulation and association with Fe on Typha latifolia root from an urban brownfield site.
    Feng H; Qian Y; Gallagher FJ; Wu M; Zhang W; Yu L; Zhu Q; Zhang K; Liu CJ; Tappero R
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):3743-50. PubMed ID: 23161499
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of exogenous spermidine on subcellular distribution and chemical forms of cadmium in Typha latifolia L. under cadmium stress.
    Tang CF; Zhang RQ; Wen SZ; Li CF; Guo XF; Liu YG
    Water Sci Technol; 2009; 59(8):1487-93. PubMed ID: 19403961
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of Amendments on Growth and Uptake of Cd and Zn by Wetland Plants, Typha angustifolia and Colocasia esculenta from Contaminated Sediments.
    Chayapan P; Kruatrachue M; Meetam M; Pokethitiyook P
    Int J Phytoremediation; 2015; 17(9):900-6. PubMed ID: 25831275
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lead, chromium and manganese removal by in vitro root cultures of two aquatic macrophytes species: Typha latifolia L. and Scirpus americanus pers.
    Santos-Díaz Mdel S; Barrón-Cruz Mdel C
    Int J Phytoremediation; 2011 Jul; 13(6):538-51. PubMed ID: 21972501
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Effect of Arbuscular Mycorrhiza (AM) on Tolerance of Cattail to Cd Stress in Aquatic Environment].
    Luo PC; Li H; Wang SG
    Huan Jing Ke Xue; 2016 Feb; 37(2):750-5. PubMed ID: 27363169
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The yield potential and growth responses of licorice (
    Tabrizi L; Lakzaei M; Motesharezadeh B
    Int J Phytoremediation; 2021; 23(3):316-327. PubMed ID: 32898452
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Suppression of root-endogenous fungi in persistently inundated
    Klymiuk AA; Sikes BA
    Mycologia; 2019; 111(5):748-757. PubMed ID: 31390954
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selenite antagonizes the phytotoxicity of Cd in the cattail Typha angustifolia.
    Ren M; Qin Z; Li X; Wang L; Wang Y; Zhang J; Huang Y; Yang S
    Ecotoxicol Environ Saf; 2020 Feb; 189():109959. PubMed ID: 31787383
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increased lead and cadmium tolerance of Typha angustifolia from Huaihe River is associated with enhanced phytochelatin synthesis and improved antioxidative capacity.
    Liu Y; Chen J; Lu S; Yang L; Qian J; Cao S
    Environ Technol; 2016 Nov; 37(21):2743-9. PubMed ID: 26959972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.