These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 35080765)
1. Detecting Biomarkers of Alzheimer's Disease Based on Multi-constrained Uncertainty-Aware Adaptive Sparse Multi-view Canonical Correlation Analysis. Wang W; Kong W; Wang S; Wei K J Mol Neurosci; 2022 Apr; 72(4):841-865. PubMed ID: 35080765 [TBL] [Abstract][Full Text] [Related]
2. Identifying associations among genomic, proteomic and imaging biomarkers via adaptive sparse multi-view canonical correlation analysis. Du L; Zhang J; Liu F; Wang H; Guo L; Han J; Disease Neuroimaging Initiative TA Med Image Anal; 2021 May; 70():102003. PubMed ID: 33735757 [TBL] [Abstract][Full Text] [Related]
3. Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer's Disease. Hao X; Li C; Du L; Yao X; Yan J; Risacher SL; Saykin AJ; Shen L; Zhang D; Sci Rep; 2017 Mar; 7():44272. PubMed ID: 28291242 [TBL] [Abstract][Full Text] [Related]
4. Identification of image genetic biomarkers of Alzheimer's disease by orthogonal structured sparse canonical correlation analysis based on a diagnostic information fusion. Yin W; Yang T; Wan G; Zhou X Math Biosci Eng; 2023 Aug; 20(9):16648-16662. PubMed ID: 37920027 [TBL] [Abstract][Full Text] [Related]
5. A multi-task SCCA method for brain imaging genetics and its application in neurodegenerative diseases. Zhang X; Hao Y; Zhang J; Ji Y; Zou S; Zhao S; Xie S; Du L Comput Methods Programs Biomed; 2023 Apr; 232():107450. PubMed ID: 36905750 [TBL] [Abstract][Full Text] [Related]
6. Associating brain imaging phenotypes and genetic in Alzheimer's disease via JSCCA approach with autocorrelation constraints. Wei K; Kong W; Wang S Med Biol Eng Comput; 2022 Jan; 60(1):95-108. PubMed ID: 34714488 [TBL] [Abstract][Full Text] [Related]
7. Multi-task learning based structured sparse canonical correlation analysis for brain imaging genetics. Kim M; Min EJ; Liu K; Yan J; Saykin AJ; Moore JH; Long Q; Shen L Med Image Anal; 2022 Feb; 76():102297. PubMed ID: 34871929 [TBL] [Abstract][Full Text] [Related]
8. inMTSCCA: An Integrated Multi-task Sparse Canonical Correlation Analysis for Multi-omic Brain Imaging Genetics. Du L; Zhang J; Zhao Y; Shang M; Guo L; Han J; Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):396-413. PubMed ID: 37442417 [TBL] [Abstract][Full Text] [Related]
9. Multi-Task Learning and Sparse Discriminant Canonical Correlation Analysis for Identification of Diagnosis-Specific Genotype-Phenotype Association. Mondal S; Maji P IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1390-1402. PubMed ID: 38587960 [TBL] [Abstract][Full Text] [Related]
10. Detecting genetic associations with brain imaging phenotypes in Alzheimer's disease via a novel structured KCCA approach. Wang L; Kong W; Wang S J Bioinform Comput Biol; 2021 Aug; 19(4):2150012. PubMed ID: 33950804 [TBL] [Abstract][Full Text] [Related]
11. Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis. Hao X; Li C; Yan J; Yao X; Risacher SL; Saykin AJ; Shen L; Zhang D; Bioinformatics; 2017 Jul; 33(14):i341-i349. PubMed ID: 28881979 [TBL] [Abstract][Full Text] [Related]
12. Identifying Modality-Consistent and Modality-Specific Features via Label-Guided Multi-Task Sparse Canonical Correlation Analysis for Neuroimaging Genetics. Hao X; Tan Q; Guo Y; Xiao Y; Yu M; Wang M; Qin J; Zhang D; Initiative ADN IEEE Trans Biomed Eng; 2023 Mar; 70(3):831-840. PubMed ID: 36044490 [TBL] [Abstract][Full Text] [Related]
13. Identify Biomarkers of Alzheimer's Disease Based on Multi-task Canonical Correlation Analysis and Regression Model. Wang S; Chen H; Kong W; Ke F; Wei K J Mol Neurosci; 2022 Aug; 72(8):1749-1763. PubMed ID: 35698015 [TBL] [Abstract][Full Text] [Related]
14. Identification of multimodal brain imaging association via a parameter decomposition based sparse multi-view canonical correlation analysis method. Zhang J; Wang H; Zhao Y; Guo L; Du L; BMC Bioinformatics; 2022 Apr; 23(Suppl 3):128. PubMed ID: 35413798 [TBL] [Abstract][Full Text] [Related]
15. Exploring Imaging Genetic Markers of Alzheimer's Disease Based on a Novel Nonlinear Correlation Analysis Algorithm. Yang R; Kong W; Liu K; Wen G; Yu Y J Mol Neurosci; 2024 Apr; 74(2):35. PubMed ID: 38568443 [TBL] [Abstract][Full Text] [Related]
16. Identify Consistent Cross-Modality Imaging Genetic Patterns via Discriminant Sparse Canonical Correlation Analysis. Wang M; Shao W; Hao X; Shen L; Zhang D IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1549-1561. PubMed ID: 31581090 [TBL] [Abstract][Full Text] [Related]
17. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. Spasov S; Passamonti L; Duggento A; Liò P; Toschi N; Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174 [TBL] [Abstract][Full Text] [Related]
18. An Improved Fusion Paired Group Lasso Structured Sparse Canonical Correlation Analysis Based on Brain Imaging Genetics to Identify Biomarkers of Alzheimer's Disease. Wang S; Wu X; Wei K; Kong W Front Aging Neurosci; 2021; 13():817520. PubMed ID: 35069181 [TBL] [Abstract][Full Text] [Related]
19. Hyper-graph based sparse canonical correlation analysis for the diagnosis of Alzheimer's disease from multi-dimensional genomic data. Shao W; Xiang S; Zhang Z; Huang K; Zhang J Methods; 2021 May; 189():86-94. PubMed ID: 32360353 [TBL] [Abstract][Full Text] [Related]
20. A Novel Longitudinal Phenotype-Genotype Association Study Based on Deep Feature Extraction and Hypergraph Models for Alzheimer's Disease. Kong W; Xu Y; Wang S; Wei K; Wen G; Yu Y; Zhu Y Biomolecules; 2023 Apr; 13(5):. PubMed ID: 37238598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]