These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35080882)

  • 1. Synthesis, Structure, and Significant Energy Gap Modulation of Symmetrical Silafluorene-Cored Tetracyanobutadiene and Tetracyanoquinodimethane Derivatives.
    Zhang Z; Gou G; Wan J; Li H; Wang M; Li L
    J Org Chem; 2022 Mar; 87(5):2470-2479. PubMed ID: 35080882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning of the HOMO-LUMO gap of donor-substituted symmetrical and unsymmetrical benzothiadiazoles.
    Misra R; Gautam P
    Org Biomol Chem; 2014 Aug; 12(29):5448-57. PubMed ID: 24940822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsymmetrical and Symmetrical Push-Pull Phenothiazines.
    Rout Y; Gautam P; Misra R
    J Org Chem; 2017 Jul; 82(13):6840-6845. PubMed ID: 28587457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NIR-Absorbing 1,1,4,4-Tetracyanobuta-1,3-diene- and Dicyanoquinodimethane-Functionalized Donor-Acceptor Phenothiazine Derivatives: Synthesis and Characterization.
    Gupta PK; Khan F; Misra R
    J Org Chem; 2023 Oct; 88(20):14308-14322. PubMed ID: 37820059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-IR absorbing 1,1,4,4-tetracyanobutadiene-functionalized phenothiazine sulfones.
    Sheokand M; Ji Tiwari N; Misra R
    Org Biomol Chem; 2023 May; 21(18):3896-3905. PubMed ID: 37165921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triphenylamine-Merocyanine-Based D1-A1-π-A2/A3-D2 Chromophore System: Synthesis, Optoelectronic, and Theoretical Studies.
    Srinivasa Rao P; L Puyad A; V Bhosale S; V Bhosale S
    Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30939780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and Characterization of Isoindigo-Based Push-Pull Chromophores.
    Rout Y; Chauhan V; Misra R
    J Org Chem; 2020 Apr; 85(7):4611-4618. PubMed ID: 32126766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetracyanobutadiene Bridged Push-Pull Chromophores: Development of New Generation Optoelectronic Materials.
    Patil Y; Butenschön H; Misra R
    Chem Rec; 2023 Jan; 23(1):e202200208. PubMed ID: 36202630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NIR-Absorbing Donor-Acceptor Based 1,1,4,4-Tetracyanobuta-1,3-Diene (TCBD)- and Cyclohexa-2,5-Diene-1,4-Ylidene-Expanded TCBD-Substituted Ferrocenyl Phenothiazines.
    Poddar M; Misra R
    Chem Asian J; 2017 Nov; 12(22):2908-2915. PubMed ID: 28901716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated Intramolecular Charge Transfer in Tetracyanobutadiene- and Expanded Tetracyanobutadiene-Incorporated Asymmetric Triphenylamine-Quinoxaline Push-Pull Conjugates.
    Jang Y; Sekaran B; Singh PP; Misra R; D'Souza F
    J Phys Chem A; 2023 May; 127(20):4455-4462. PubMed ID: 37192382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroelectrochemical and Computational Analysis of a Series of Cycloaddition-Retroelectrocyclization-Derived Donor-Acceptor Chromophores.
    Banziger SD; Clendening RA; Oxley BM; Ren T
    J Phys Chem B; 2020 Dec; 124(52):11901-11909. PubMed ID: 33347757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of tetrazine-tetracyanobutadienes and their transformation into pyridazines
    Kamble AV; Raj K A; Malakalapalli RR
    Org Biomol Chem; 2023 Jul; 21(28):5790-5798. PubMed ID: 37395082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NIR absorbing ferrocenyl perylenediimide-based donor-acceptor chromophores.
    Wazid M; Misra R
    Dalton Trans; 2024 Sep; 53(36):15164-15175. PubMed ID: 39219489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of new silafluorene-based copolymers for polymer solar cells.
    Bathula CD; Park SJ; Lee JC; Shin WS; Moon SJ; Lee SK
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6002-7. PubMed ID: 25936045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast Charge-Separation in Triphenylamine-BODIPY-Derived Triads Carrying Centrally Positioned, Highly Electron-Deficient, Dicyanoquinodimethane or Tetracyanobutadiene Electron-Acceptors.
    Gautam P; Misra R; Thomas MB; D'Souza F
    Chemistry; 2017 Jul; 23(38):9192-9200. PubMed ID: 28486754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blue-red emitting materials based on a pyrido[2,3-
    Kapse DM; Singh PS; Ghadiyali M; Chacko S; Kamble RM
    RSC Adv; 2022 Feb; 12(11):6888-6905. PubMed ID: 35424617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating Donor Effects in Isoindigo-Based Small Molecular Fluorophores.
    Vijayan SM; Sparks N; Roy JK; Smith C; Tate C; Hammer NI; Leszczynski J; Watkins DL
    J Phys Chem A; 2020 Dec; 124(51):10777-10786. PubMed ID: 33305579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, crystal structures, and two-photon absorption of a series of cyanoacetic acid triphenylamine derivatives.
    Hao F; Li D; Zhang Q; Li S; Zhang S; Zhou H; Wu J; Tian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Nov; 150():867-78. PubMed ID: 26119354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the optoelectronic properties of triphenylamine (TPA) based small molecules by modifying central core for photovoltaic applications.
    Zahid S; Rasool A; Shehzad RA; Bhatti IA; Iqbal J
    J Mol Model; 2021 Aug; 27(9):237. PubMed ID: 34363112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the Rainbow: Systematic Modulation of Donor-Acceptor Systems through Donor Substituents and Solvent.
    Larsen CB; van der Salm H; Shillito GE; Lucas NT; Gordon KC
    Inorg Chem; 2016 Sep; 55(17):8446-58. PubMed ID: 27500590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.