These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 35080888)
1. Photoinduced Charge Transfer and Recombination Dynamics in Star Nonfullerene Organic Solar Cells. Chen Z; Zhu H J Phys Chem Lett; 2022 Feb; 13(4):1123-1130. PubMed ID: 35080888 [TBL] [Abstract][Full Text] [Related]
2. The Dynamics of Delocalized Excitations in Organic Solar Cells with Nonfullerene Acceptors. Li Q; Wang R; Zhang C J Phys Chem Lett; 2023 Mar; 14(12):3031-3038. PubMed ID: 36946622 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive and Comparative Analysis of Photoinduced Charge Generation, Recombination Kinetics, and Energy Losses in Fullerene and Nonfullerene Acceptor-Based Organic Solar Cells. Sharma R; Jain N; Lee H; Kabra D; Yoo S ACS Appl Mater Interfaces; 2020 Oct; 12(40):45083-45091. PubMed ID: 32900181 [TBL] [Abstract][Full Text] [Related]
4. Molecular Insight into Efficient Charge Generation in Low-Driving-Force Nonfullerene Organic Solar Cells. Han G; Yi Y Acc Chem Res; 2022 Mar; 55(6):869-877. PubMed ID: 35230078 [TBL] [Abstract][Full Text] [Related]
5. Unveiling Excitonic Dynamics in High-Efficiency Nonfullerene Organic Solar Cells to Direct Morphological Optimization for Suppressing Charge Recombination. Liu X; Yan Y; Honarfar A; Yao Y; Zheng K; Liang Z Adv Sci (Weinh); 2019 Apr; 6(8):1802103. PubMed ID: 31016115 [TBL] [Abstract][Full Text] [Related]
6. Revealing the Role of Donor/Acceptor Interfaces in Nonfullerene-Acceptor Based Organic Solar Cells: Charge Separation versus Recombination. Ji Y; Mu X; Yin H; Cui B; Hao X; Gao K J Phys Chem Lett; 2023 Apr; 14(16):3811-3817. PubMed ID: 37057899 [TBL] [Abstract][Full Text] [Related]
7. Investigating the Trade-Off between Device Performance and Energy Loss in Nonfullerene Organic Solar Cells. Hong L; Yao H; Yu R; Xu Y; Gao B; Ge Z; Hou J ACS Appl Mater Interfaces; 2019 Aug; 11(32):29124-29131. PubMed ID: 31331162 [TBL] [Abstract][Full Text] [Related]
8. Ultrafast Hole Transfer and Carrier Transport Controlled by Nanoscale-Phase Morphology in Nonfullerene Organic Solar Cells. Chen Z; Chen X; Qiu B; Zhou G; Jia Z; Tao W; Li Y; Yang YM; Zhu H J Phys Chem Lett; 2020 May; 11(9):3226-3233. PubMed ID: 32259443 [TBL] [Abstract][Full Text] [Related]
9. Ultrafast charge transfer in a nonfullerene all-small-molecule organic solar cell: a nonadiabatic dynamics simulation with optimally tuned range-separated functional. Mao D; Chen XR; Li DH; Liu XY; Cui G; Li L Phys Chem Chem Phys; 2022 Nov; 24(44):27173-27183. PubMed ID: 36321450 [TBL] [Abstract][Full Text] [Related]
10. Achieving a Higher Energy Charge-Transfer State and Reduced Voltage Loss for Organic Solar Cells using Nonfullerene Acceptors with Norbornenyl-Functionalized Terminal Groups. Liu W; Lu H; Xu X; Huang H; Zhang J; Tang Z; Bo Z ACS Appl Mater Interfaces; 2021 Jun; 13(21):24765-24773. PubMed ID: 34006102 [TBL] [Abstract][Full Text] [Related]
11. The role of charge recombination to triplet excitons in organic solar cells. Gillett AJ; Privitera A; Dilmurat R; Karki A; Qian D; Pershin A; Londi G; Myers WK; Lee J; Yuan J; Ko SJ; Riede MK; Gao F; Bazan GC; Rao A; Nguyen TQ; Beljonne D; Friend RH Nature; 2021 Sep; 597(7878):666-671. PubMed ID: 34588666 [TBL] [Abstract][Full Text] [Related]
12. Hole Transfer Originating from Weakly Bound Exciton Dissociation in Acceptor-Donor-Acceptor Nonfullerene Organic Solar Cells. Niu MS; Wang KW; Yang XY; Bi PQ; Zhang KN; Feng XJ; Chen F; Qin W; Xia JL; Hao XT J Phys Chem Lett; 2019 Nov; 10(22):7100-7106. PubMed ID: 31682127 [TBL] [Abstract][Full Text] [Related]
13. Unraveling the Microstructure-Related Device Stability for Polymer Solar Cells Based on Nonfullerene Small-Molecular Acceptors. Du X; Heumueller T; Gruber W; Almora O; Classen A; Qu J; He F; Unruh T; Li N; Brabec CJ Adv Mater; 2020 Apr; 32(16):e1908305. PubMed ID: 32108389 [TBL] [Abstract][Full Text] [Related]
14. Highly Efficient Nonfullerene Acceptor with Sulfonyl-Based Ending Groups. Tao L; Liu X; Deng C; Zhang W; Song W ACS Appl Mater Interfaces; 2020 Nov; 12(44):49659-49665. PubMed ID: 33104347 [TBL] [Abstract][Full Text] [Related]
15. Chlorinated Narrow Bandgap Polymer Suppresses Non-Radiative Recombination Energy Loss Enabling Perylene Diimides-Based Organic Solar Cells Exceeding 10% Efficiency. Gao X; Tong X; Xu M; Zhang L; Wang Y; Liu Z; Yang L; Gao J; Shao M; Liu Z Small; 2023 Jul; 19(29):e2208217. PubMed ID: 37013462 [TBL] [Abstract][Full Text] [Related]
16. Regulation of organic solar cells performance through external electric field: From charge transfer mechanisms to photovoltaic properties. Guo H; Wang X; Zhang M; Pullerits T; Song P Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 325():125058. PubMed ID: 39226669 [TBL] [Abstract][Full Text] [Related]
17. Star-Shaped Non-Fullerene Small Acceptors for Organic Solar Cells. Pan YQ; Sun GY ChemSusChem; 2019 Oct; 12(20):4570-4600. PubMed ID: 31313523 [TBL] [Abstract][Full Text] [Related]
18. Organic Photovoltaics Utilizing Small-Molecule Donors and Y-Series Nonfullerene Acceptors. Ge J; Xie L; Peng R; Ge Z Adv Mater; 2023 May; 35(20):e2206566. PubMed ID: 36482012 [TBL] [Abstract][Full Text] [Related]
19. Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells. Naveed HB; Zhou K; Ma W Acc Chem Res; 2019 Oct; 52(10):2904-2915. PubMed ID: 31577121 [TBL] [Abstract][Full Text] [Related]
20. Ultrafast Long-Range Charge Separation in Nonfullerene Organic Solar Cells. Tamai Y; Fan Y; Kim VO; Ziabrev K; Rao A; Barlow S; Marder SR; Friend RH; Menke SM ACS Nano; 2017 Dec; 11(12):12473-12481. PubMed ID: 29148715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]