These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 35080911)

  • 1. Comparison of Six Lytic Polysaccharide Monooxygenases from
    Tõlgo M; Hegnar OA; Østby H; Várnai A; Vilaplana F; Eijsink VGH; Olsson L
    Appl Environ Microbiol; 2022 Mar; 88(6):e0009622. PubMed ID: 35080911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa.
    Hegnar OA; Østby H; Petrović DM; Olsson L; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2021 Nov; 87(24):e0165221. PubMed ID: 34613755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus
    Hüttner S; Várnai A; Petrović DM; Bach CX; Kim Anh DT; Thanh VN; Eijsink VGH; Larsbrink J; Olsson L
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic debranching is a key determinant of the xylan-degrading activity of family AA9 lytic polysaccharide monooxygenases.
    Tõlgo M; Hegnar OA; Larsbrink J; Vilaplana F; Eijsink VGH; Olsson L
    Biotechnol Biofuels Bioprod; 2023 Jan; 16(1):2. PubMed ID: 36604763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of three seemingly similar lytic polysaccharide monooxygenases from
    Petrović DM; Várnai A; Dimarogona M; Mathiesen G; Sandgren M; Westereng B; Eijsink VGH
    J Biol Chem; 2019 Oct; 294(41):15068-15081. PubMed ID: 31431506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic and transcriptomic analysis of the thermophilic lignocellulose-degrading fungus Thielavia terrestris LPH172.
    Tõlgo M; Hüttner S; Rugbjerg P; Thuy NT; Thanh VN; Larsbrink J; Olsson L
    Biotechnol Biofuels; 2021 Jun; 14(1):131. PubMed ID: 34082802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the molecular determinants driving the substrate specificity of fungal lytic polysaccharide monooxygenases (LPMOs).
    Frandsen KEH; Haon M; Grisel S; Henrissat B; Lo Leggio L; Berrin JG
    J Biol Chem; 2021; 296():100086. PubMed ID: 33199373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xyloglucan.
    Jagadeeswaran G; Gainey L; Prade R; Mort AJ
    Appl Microbiol Biotechnol; 2016 May; 100(10):4535-47. PubMed ID: 27075737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of AA9 Lytic Polysaccharide Monooxygenases Impacts A. nidulans Secretome and Growth on Lignocellulose.
    Terrasan CRF; Rubio MV; Gerhardt JA; Cairo JPF; Contesini FJ; Zubieta MP; Figueiredo FL; Valadares FL; Corrêa TLR; Murakami MT; Franco TT; Davies GJ; Walton PH; Damasio A
    Microbiol Spectr; 2022 Jun; 10(3):e0212521. PubMed ID: 35658600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a novel AA16 lytic polysaccharide monooxygenase from Thermothelomyces thermophilus and comparison of biochemical properties with an LPMO from AA9 family.
    Chorozian K; Karnaouri A; Tryfona T; Kondyli NG; Karantonis A; Topakas E
    Carbohydr Polym; 2024 Oct; 342():122387. PubMed ID: 39048228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of cellulose-degrading AA9 lytic polysaccharide monooxygenases and their potential exploitation.
    Zhang R
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3229-3243. PubMed ID: 32076777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of two family AA9 LPMOs from Aspergillus tamarii with distinct activities on xyloglucan reveals structural differences linked to cleavage specificity.
    Monclaro AV; Petrović DM; Alves GSC; Costa MMC; Midorikawa GEO; Miller RNG; Filho EXF; Eijsink VGH; Várnai A
    PLoS One; 2020; 15(7):e0235642. PubMed ID: 32640001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action.
    Várnai A; Umezawa K; Yoshida M; Eijsink VGH
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a thermostable fungal lytic polysaccharide monooxygenase and evaluation of its effect on lignocellulosic degradation.
    Zhang R; Liu Y; Zhang Y; Feng D; Hou S; Guo W; Niu K; Jiang Y; Han L; Sindhu L; Fang X
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5739-5750. PubMed ID: 31152202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Linker Region Promotes Activity and Binding Efficiency of Modular LPMO towards Polymeric Substrate.
    Srivastava A; Nagar P; Rathore S; Adlakha N
    Microbiol Spectr; 2022 Feb; 10(1):e0269721. PubMed ID: 35080440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates.
    Simmons TJ; Frandsen KEH; Ciano L; Tryfona T; Lenfant N; Poulsen JC; Wilson LFL; Tandrup T; Tovborg M; Schnorr K; Johansen KS; Henrissat B; Walton PH; Lo Leggio L; Dupree P
    Nat Commun; 2017 Oct; 8(1):1064. PubMed ID: 29057953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases.
    Frandsen KEH; Tovborg M; Jørgensen CI; Spodsberg N; Rosso MN; Hemsworth GR; Garman EF; Grime GW; Poulsen JN; Batth TS; Miyauchi S; Lipzen A; Daum C; Grigoriev IV; Johansen KS; Henrissat B; Berrin JG; Lo Leggio L
    J Biol Chem; 2019 Nov; 294(45):17117-17130. PubMed ID: 31471321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel AA14 LPMO from Talaromyces rugulosus with bifunctional cellulolytic/hemicellulolytic activity boosted cellulose hydrolysis.
    Chen K; Zhao X; Zhang P; Long L; Ding S
    Biotechnol Biofuels Bioprod; 2024 Feb; 17(1):30. PubMed ID: 38395898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.