These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 35081047)
1. Evaluation of Closed-system Transfer Devices in Reducing Potential Risk for Surface Contamination Following Simulated Hazardous-drug Preparation and Compounding. Soefje S; Rickabaugh K; Rajkumar R; Wall KP Int J Pharm Compd; 2022; 26(1):72-79. PubMed ID: 35081047 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Closed-system Transfer Devices in Reducing Potential Risk for Surface Contamination Following Simulated Hazardous-drug Preparation and Compounding. Soefje S; Rickabaugh K; Rajkumar R; Wall KP Int J Pharm Compd; 2021; 25(6):515-522. PubMed ID: 34807847 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of external contamination on the vial surfaces of some hazardous drugs that commonly used in Chinese hospitals and comparison between environmental contamination generated during robotic compounding by IV: Dispensing robot vs. manual compounding in biological safety cabinet. Ml H; T W; Jq Z; Yj S; Tj G; Lk Z; J L; Jf Y J Oncol Pharm Pract; 2022 Oct; 28(7):1487-1498. PubMed ID: 34162245 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of surface contamination with cyclophosphamide following simulated hazardous drug preparation activities using two closed-system products. Zock MD; Soefje S; Rickabaugh K J Oncol Pharm Pract; 2011 Mar; 17(1):49-54. PubMed ID: 20584743 [TBL] [Abstract][Full Text] [Related]
5. Multicenter evaluation of a new closed system drug-transfer device in reducing surface contamination by antineoplastic hazardous drugs. Bartel SB; Tyler TG; Power LA Am J Health Syst Pharm; 2018 Feb; 75(4):199-211. PubMed ID: 29339374 [TBL] [Abstract][Full Text] [Related]
6. Impact and appreciation of two methods aiming at reducing hazardous drug environmental contamination: The centralization of the priming of IV tubing in the pharmacy and use of a closed-system transfer device. Guillemette A; Langlois H; Voisine M; Merger D; Therrien R; Mercier G; Lebel D; Bussières JF J Oncol Pharm Pract; 2014 Dec; 20(6):426-32. PubMed ID: 24395542 [TBL] [Abstract][Full Text] [Related]
7. Reducing workplace cytotoxic surface contamination using a closed-system drug transfer device. Siderov J; Kirsa S; McLauchlan R J Oncol Pharm Pract; 2010 Mar; 16(1):19-25. PubMed ID: 19965949 [TBL] [Abstract][Full Text] [Related]
8. Use of a closed system device to reduce occupational contamination and exposure to antineoplastic drugs in the hospital work environment. Yoshida J; Tei G; Mochizuki C; Masu Y; Koda S; Kumagai S Ann Occup Hyg; 2009 Mar; 53(2):153-60. PubMed ID: 19261696 [TBL] [Abstract][Full Text] [Related]
9. Comparison of surface contamination with cyclophosphamide and fluorouracil using a closed-system drug transfer device versus standard preparation techniques. Harrison BR; Peters BG; Bing MR Am J Health Syst Pharm; 2006 Sep; 63(18):1736-44. PubMed ID: 16960258 [TBL] [Abstract][Full Text] [Related]
10. Reduction in surface contamination with antineoplastic drugs in 22 hospital pharmacies in the US following implementation of a closed-system drug transfer device. Sessink PJ; Connor TH; Jorgenson JA; Tyler TG J Oncol Pharm Pract; 2011 Mar; 17(1):39-48. PubMed ID: 20156932 [TBL] [Abstract][Full Text] [Related]
11. Environmental contamination by cyclophosphamide preparation: Comparison of conventional manual production in biological safety cabinet and robot-assisted production by APOTECAchemo. Schierl R; Masini C; Groeneveld S; Fischer E; Böhlandt A; Rosini V; Paolucci D J Oncol Pharm Pract; 2016 Feb; 22(1):37-45. PubMed ID: 25227229 [TBL] [Abstract][Full Text] [Related]
12. Use of a closed system drug-transfer device eliminates surface contamination with antineoplastic agents. Clark BA; Sessink PJ J Oncol Pharm Pract; 2013 Jun; 19(2):99-104. PubMed ID: 23292973 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Closed System Transfer Devices in Preventing Chemotherapy Agents Contamination During Compounding Process-A Single and Comparative Study in China. Tang Y; Che X; Wang YL; Ye X; Cao WL; Wang Y Front Public Health; 2022; 10():827835. PubMed ID: 35509509 [TBL] [Abstract][Full Text] [Related]
14. Identification and reduction of hazardous drug surface contamination through the use of a novel closed-system transfer device coupled with a point-of-care hazardous drug detection system. Brechtelsbauer E Am J Health Syst Pharm; 2023 Mar; 80(7):435-444. PubMed ID: 36370411 [TBL] [Abstract][Full Text] [Related]
15. The assessment of environmental and external cross-contamination in preparing ready-to-administer cytotoxic drugs: a comparison between a robotic system and conventional manual production. Werumeus Buning A; Geersing TH; Crul M Int J Pharm Pract; 2020 Feb; 28(1):66-74. PubMed ID: 31489970 [TBL] [Abstract][Full Text] [Related]
16. Environmental contamination, product contamination and workers exposure using a robotic system for antineoplastic drug preparation. Sessink PJ; Leclercq GM; Wouters DM; Halbardier L; Hammad C; Kassoul N J Oncol Pharm Pract; 2015 Apr; 21(2):118-27. PubMed ID: 24567041 [TBL] [Abstract][Full Text] [Related]
17. Effectiveness of Closed System Drug Transfer Devices in Reducing Leakage during Antineoplastic Drugs Compounding. Piccardo MT; Forlani A; Izzotti A Int J Environ Res Public Health; 2021 Jul; 18(15):. PubMed ID: 34360250 [TBL] [Abstract][Full Text] [Related]
18. Pre and post intervention study of antiblastic drugs contamination surface levels at a Pharmacy Department Compounding Area using a closed system drug transfer device and a decontamination process. Valero S; López-Briz E; Vila N; Solana A; Melero M; Poveda JL Regul Toxicol Pharmacol; 2018 Jun; 95():1-7. PubMed ID: 29510165 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of a closed-system cytotoxic transfer device in a pharmaceutical isolator. Vyas N; Turner A; Clark JM; Sewell GJ J Oncol Pharm Pract; 2016 Feb; 22(1):10-9. PubMed ID: 25073678 [TBL] [Abstract][Full Text] [Related]
20. Syringe plunger contamination by hazardous drugs: a comparative study. Smith ST; Szlaczky MC J Oncol Pharm Pract; 2014 Oct; 20(5):381-5. PubMed ID: 24598373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]