BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35081142)

  • 1. Quantifying the effect of sagittal plane joint angle variability on bipedal fall risk.
    Mitchell A; Martin AE
    PLoS One; 2022; 17(1):e0262749. PubMed ID: 35081142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of footwear fixation on joint angle variability during straight gait in the elderly.
    Hida N; Fujimoto M; Ooie T; Kobayashi Y
    Gait Posture; 2021 May; 86():162-168. PubMed ID: 33751967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variability in inter-joint coordination during walking of elderly adults and its association with clinical balance measures.
    Chiu SL; Chou LS
    Clin Biomech (Bristol, Avon); 2013 Apr; 28(4):454-8. PubMed ID: 23538128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower-limb coordination and variability during gait: The effects of age and walking surface.
    Ippersiel P; Robbins SM; Dixon PC
    Gait Posture; 2021 Mar; 85():251-257. PubMed ID: 33626449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using dynamic walking models to identify factors that contribute to increased risk of falling in older adults.
    Roos PE; Dingwell JB
    Hum Mov Sci; 2013 Oct; 32(5):984-96. PubMed ID: 24120280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of statistical persistence in joint angle variation during walking.
    Tsang DJ; Lukac M; Martin AE
    Hum Mov Sci; 2019 Dec; 68():102528. PubMed ID: 31706119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults.
    Tajima T; Tateuchi H; Koyama Y; Ikezoe T; Ichihashi N
    Hum Mov Sci; 2018 Apr; 58():260-267. PubMed ID: 29524851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redistribution of intra- and inter-limb support moments during downhill walking on different slopes.
    Hong SW; Wang TM; Lu TW; Li JD; Leu TH; Ho WP
    J Biomech; 2014 Feb; 47(3):709-15. PubMed ID: 24398165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnitude and variability of gait characteristics when walking on an irregular surface at different speeds.
    Blair S; Lake MJ; Ding R; Sterzing T
    Hum Mov Sci; 2018 Jun; 59():112-120. PubMed ID: 29653340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aging effects on leg joint variability during walking with balance perturbations.
    Qiao M; Feld JA; Franz JR
    Gait Posture; 2018 May; 62():27-33. PubMed ID: 29510323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Gait Variability to Predict Inter-individual Differences in Learning Rate of a Novel Obstacle Course.
    Ulman S; Ranganathan S; Queen R; Srinivasan D
    Ann Biomed Eng; 2019 May; 47(5):1191-1202. PubMed ID: 30825029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of simulated neuromuscular noise on movement variability and fall risk in a 3D dynamic walking model.
    Roos PE; Dingwell JB
    J Biomech; 2010 Nov; 43(15):2929-35. PubMed ID: 20708189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in segmental mass and inertia during pregnancy: A musculoskeletal model of the pregnant woman.
    Haddox AG; Hausselle J; Azoug A
    Gait Posture; 2020 Feb; 76():389-395. PubMed ID: 31927359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower extremity joint coupling variability during gait in young adults with and without chronic ankle instability.
    Lilley T; Herb CC; Hart J; Hertel J
    Sports Biomech; 2018 Jun; 17(2):261-272. PubMed ID: 28610477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of slipping-like perturbation intensity on the dynamical stability.
    Aprigliano F; Martelli D; Tropea P; Micera S; Monaco V
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5295-8. PubMed ID: 26737486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of the most common gait perturbations on the compensatory limb's ankle, knee, and hip moments during the first stepping response.
    Yoo D; Seo KH; Lee BC
    Gait Posture; 2019 Jun; 71():98-104. PubMed ID: 31031225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Associations between measures of gait stability, leg strength and fear of falling.
    Toebes MJ; Hoozemans MJ; Furrer R; Dekker J; van Dieën JH
    Gait Posture; 2015 Jan; 41(1):76-80. PubMed ID: 25242294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local Dynamic Stability of the Locomotion of Lower Extremity Joints and Trunk During Backward Upslope Walking.
    Wu Y; Liu A; Dai KR; Gu DY
    J Mot Behav; 2019; 51(6):587-599. PubMed ID: 30523747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.