BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35081193)

  • 1. Critical assessment of genome-scale metabolic models of
    Zamani Amirzakaria J; Marashi SA; Malboobi MA; Lohrasebi T; Forouzan E
    Mol Omics; 2022 May; 18(4):328-335. PubMed ID: 35081193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are we ready for genome-scale modeling in plants?
    Collakova E; Yen JY; Senger RS
    Plant Sci; 2012 Aug; 191-192():53-70. PubMed ID: 22682565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drought Stress Responses in Context-Specific Genome-Scale Metabolic Models of
    Siriwach R; Matsuda F; Yano K; Hirai MY
    Metabolites; 2020 Apr; 10(4):. PubMed ID: 32325728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the flux distributions simulated with genome-scale metabolic models of
    Pereira R; Nielsen J; Rocha I
    Metab Eng Commun; 2016 Dec; 3():153-163. PubMed ID: 29468121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains.
    Massaiu I; Pasotti L; Sonnenschein N; Rama E; Cavaletti M; Magni P; Calvio C; Herrgård MJ
    Microb Cell Fact; 2019 Jan; 18(1):3. PubMed ID: 30626384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-guided evaluation of extraction and simulation methods for cancer patient-specific metabolic models.
    Lee SM; Lee G; Kim HU
    Comput Struct Biotechnol J; 2022; 20():3041-3052. PubMed ID: 35782748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ΔFBA-Predicting metabolic flux alterations using genome-scale metabolic models and differential transcriptomic data.
    Ravi S; Gunawan R
    PLoS Comput Biol; 2021 Nov; 17(11):e1009589. PubMed ID: 34758020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Escherichia coli metabolism models and simulation approaches in phenotype predictions: Validation against experimental data.
    Costa RS; Vinga S
    Biotechnol Prog; 2018 Nov; 34(6):1344-1354. PubMed ID: 30294889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using PSAMM for the Curation and Analysis of Genome-Scale Metabolic Models.
    Dufault-Thompson K; Steffensen JL; Zhang Y
    Methods Mol Biol; 2018; 1716():131-150. PubMed ID: 29222752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Teasing out missing reactions in genome-scale metabolic networks through hypergraph learning.
    Chen C; Liao C; Liu YY
    Nat Commun; 2023 Apr; 14(1):2375. PubMed ID: 37185345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-genome metabolic modeling predicts functional inter-dependencies in the Arabidopsis root microbiome.
    Mataigne V; Vannier N; Vandenkoornhuyse P; Hacquard S
    Microbiome; 2022 Dec; 10(1):217. PubMed ID: 36482420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting metabolic fluxes from omics data via machine learning: Moving from knowledge-driven towards data-driven approaches.
    Gonçalves DM; Henriques R; Costa RS
    Comput Struct Biotechnol J; 2023; 21():4960-4973. PubMed ID: 37876626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions.
    Williams TC; Poolman MG; Howden AJ; Schwarzlander M; Fell DA; Ratcliffe RG; Sweetlove LJ
    Plant Physiol; 2010 Sep; 154(1):311-23. PubMed ID: 20605915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grohar: Automated Visualization of Genome-Scale Metabolic Models and Their Pathways.
    Moškon M; Zimic N; Mraz M
    J Comput Biol; 2018 May; 25(5):505-508. PubMed ID: 29461874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-scale modeling of Arabidopsis thaliana response to different CO2 conditions: From gene expression to metabolic flux.
    Liu L; Shen F; Xin C; Wang Z
    J Integr Plant Biol; 2016 Jan; 58(1):2-11. PubMed ID: 26010949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating Metabolic Fluxes Using a Maximum Network Flexibility Paradigm.
    Megchelenbrink W; Rossell S; Huynen MA; Notebaart RA; Marchiori E
    PLoS One; 2015; 10(10):e0139665. PubMed ID: 26457579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stoichiometric Representation of Gene-Protein-Reaction Associations Leverages Constraint-Based Analysis from Reaction to Gene-Level Phenotype Prediction.
    Machado D; Herrgård MJ; Rocha I
    PLoS Comput Biol; 2016 Oct; 12(10):e1005140. PubMed ID: 27711110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the accuracy of flux balance analysis through the implementation of carbon availability constraints for intracellular reactions.
    Lularevic M; Racher AJ; Jaques C; Kiparissides A
    Biotechnol Bioeng; 2019 Sep; 116(9):2339-2352. PubMed ID: 31112296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Prediction of Synthetic Lethals in Genome-Scale Metabolic Models Using Fast-SL.
    Raman K; Pratapa A; Mohite O; Balachandran S
    Methods Mol Biol; 2018; 1716():315-336. PubMed ID: 29222760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions.
    Cheung CY; Williams TC; Poolman MG; Fell DA; Ratcliffe RG; Sweetlove LJ
    Plant J; 2013 Sep; 75(6):1050-61. PubMed ID: 23738527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.