These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35081349)

  • 1. History-dependent dopamine release increases cAMP levels in most basal amygdala glutamatergic neurons to control learning.
    Lutas A; Fernando K; Zhang SX; Sambangi A; Andermann ML
    Cell Rep; 2022 Jan; 38(4):110297. PubMed ID: 35081349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopaminergic modulation of cAMP drives nonlinear plasticity across the Drosophila mushroom body lobes.
    Boto T; Louis T; Jindachomthong K; Jalink K; Tomchik SM
    Curr Biol; 2014 Apr; 24(8):822-31. PubMed ID: 24684937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A VTA to Basal Amygdala Dopamine Projection Contributes to Signal Salient Somatosensory Events during Fear Learning.
    Tang W; Kochubey O; Kintscher M; Schneggenburger R
    J Neurosci; 2020 May; 40(20):3969-3980. PubMed ID: 32277045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concerted Actions of Octopamine and Dopamine Receptors Drive Olfactory Learning.
    Sabandal JM; Sabandal PR; Kim YC; Han KA
    J Neurosci; 2020 May; 40(21):4240-4250. PubMed ID: 32277043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic AMP-dependent plasticity underlies rapid changes in odor coding associated with reward learning.
    Louis T; Stahl A; Boto T; Tomchik SM
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):E448-E457. PubMed ID: 29284750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholine is released in the basolateral amygdala in response to predictors of reward and enhances the learning of cue-reward contingency.
    Crouse RB; Kim K; Batchelor HM; Girardi EM; Kamaletdinova R; Chan J; Rajebhosale P; Pittenger ST; Role LW; Talmage DA; Jing M; Li Y; Gao XB; Mineur YS; Picciotto MR
    Elife; 2020 Sep; 9():. PubMed ID: 32945260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional activation of phosphodiesterase 7B1 by dopamine D1 receptor stimulation through the cyclic AMP/cyclic AMP-dependent protein kinase/cyclic AMP-response element binding protein pathway in primary striatal neurons.
    Sasaki T; Kotera J; Omori K
    J Neurochem; 2004 Apr; 89(2):474-83. PubMed ID: 15056290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient cAMP production drives rapid and sustained spiking in brainstem parabrachial neurons to suppress feeding.
    Singh Alvarado J; Lutas A; Madara JC; Isaac J; Lommer C; Massengill C; Andermann ML
    Neuron; 2024 May; 112(9):1416-1425.e5. PubMed ID: 38417435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basal Forebrain and Brainstem Cholinergic Neurons Differentially Impact Amygdala Circuits and Learning-Related Behavior.
    Aitta-Aho T; Hay YA; Phillips BU; Saksida LM; Bussey TJ; Paulsen O; Apergis-Schoute J
    Curr Biol; 2018 Aug; 28(16):2557-2569.e4. PubMed ID: 30100338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling.
    Zhang SX; Lutas A; Yang S; Diaz A; Fluhr H; Nagel G; Gao S; Andermann ML
    Nature; 2021 Sep; 597(7875):245-249. PubMed ID: 34433964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine D1-like receptor activation depolarizes medium spiny neurons of the mouse nucleus accumbens by inhibiting inwardly rectifying K+ currents through a cAMP-dependent protein kinase A-independent mechanism.
    Podda MV; Riccardi E; D'Ascenzo M; Azzena GB; Grassi C
    Neuroscience; 2010 May; 167(3):678-90. PubMed ID: 20211700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estrogenic stimulation of neurite growth in midbrain dopaminergic neurons depends on cAMP/protein kinase A signalling.
    Beyer C; Karolczak M
    J Neurosci Res; 2000 Jan; 59(1):107-16. PubMed ID: 10658191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dorsal Raphe Dopamine Neurons Signal Motivational Salience Dependent on Internal State, Expectation, and Behavioral Context.
    Cho JR; Chen X; Kahan A; Robinson JE; Wagenaar DA; Gradinaru V
    J Neurosci; 2021 Mar; 41(12):2645-2655. PubMed ID: 33563725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of α7 nicotinic acetylcholine receptors increases intracellular cAMP levels via activation of AC1 in hippocampal neurons.
    Cheng Q; Yakel JL
    Neuropharmacology; 2015 Aug; 95():405-14. PubMed ID: 25937212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine 3',5'-cyclic monophosphate enhances dopamine accumulation in rat hypothalamic cell culture containing dopaminergic neurons.
    Kadowaki K; Hirota K; Koike K; Ohmichi M; Kiyama H; Miyake A; Tanizawa O
    Neuroendocrinology; 1990 Sep; 52(3):256-61. PubMed ID: 2170853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Physiopathology of cAMP/PKA signaling in neurons].
    Castro L; Yapo C; Vincent P
    Biol Aujourdhui; 2016; 210(4):191-203. PubMed ID: 28327278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine suppresses osteoclast differentiation via cAMP/PKA/CREB pathway.
    Wang L; Han L; Xue P; Hu X; Wong SW; Deng M; Tseng HC; Huang BW; Ko CC
    Cell Signal; 2021 Feb; 78():109847. PubMed ID: 33242564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D1/D5 dopamine receptors stimulate intracellular calcium release in primary cultures of neocortical and hippocampal neurons.
    Lezcano N; Bergson C
    J Neurophysiol; 2002 Apr; 87(4):2167-75. PubMed ID: 11929934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholera toxin-sensitive 3',5'-cyclic adenosine monophosphate and calcium signals of the human dopamine-D1 receptor: selective potentiation by protein kinase A.
    Liu YF; Civelli O; Zhou QY; Albert PR
    Mol Endocrinol; 1992 Nov; 6(11):1815-24. PubMed ID: 1282671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epac Signaling Is Required for Cocaine-Induced Change in AMPA Receptor Subunit Composition in the Ventral Tegmental Area.
    Liu X; Chen Y; Tong J; Reynolds AM; Proudfoot SC; Qi J; Penzes P; Lu Y; Liu QS
    J Neurosci; 2016 Apr; 36(17):4802-15. PubMed ID: 27122037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.