These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 35081486)
1. Multielectrode biosensor chip for spatial resolution screening of 3D cell models based on microcavity arrays. Zitzmann FD; Schmidt S; Naumann M; Belder D; Jahnke HG; Robitzki AA Biosens Bioelectron; 2022 Apr; 202():114010. PubMed ID: 35081486 [TBL] [Abstract][Full Text] [Related]
2. Microcavity well-plate for automated parallel bioelectronic analysis of 3D cell cultures. Zitzmann FD; Schmidt S; Frank R; Weigel W; Meier M; Jahnke HG Biosens Bioelectron; 2024 Apr; 250():116042. PubMed ID: 38266619 [TBL] [Abstract][Full Text] [Related]
3. Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models. Kloss D; Kurz R; Jahnke HG; Fischer M; Rothermel A; Anderegg U; Simon JC; Robitzki AA Biosens Bioelectron; 2008 May; 23(10):1473-80. PubMed ID: 18289841 [TBL] [Abstract][Full Text] [Related]
4. Drug testing on 3D in vitro tissues trapped on a microcavity chip. Kloss D; Fischer M; Rothermel A; Simon JC; Robitzki AA Lab Chip; 2008 Jun; 8(6):879-84. PubMed ID: 18497906 [TBL] [Abstract][Full Text] [Related]
5. A novel 96-well multielectrode array based impedimetric monitoring platform for comparative drug efficacy analysis on 2D and 3D brain tumor cultures. Eichler M; Jahnke HG; Krinke D; Müller A; Schmidt S; Azendorf R; Robitzki AA Biosens Bioelectron; 2015 May; 67():582-9. PubMed ID: 25445619 [TBL] [Abstract][Full Text] [Related]
6. A novel organotypic tauopathy model on a new microcavity chip for bioelectronic label-free and real time monitoring. Krinke D; Jahnke HG; Mack TG; Hirche A; Striggow F; Robitzki AA Biosens Bioelectron; 2010 Sep; 26(1):162-8. PubMed ID: 20591644 [TBL] [Abstract][Full Text] [Related]
7. Biohybrid microarrays--impedimetric biosensors with 3D in vitro tissues for toxicological and biomedical screening. Thielecke H; Mack A; Robitzki A Fresenius J Anal Chem; 2001 Jan; 369(1):23-9. PubMed ID: 11210225 [TBL] [Abstract][Full Text] [Related]
8. FEM-based design of optical transparent indium tin oxide multielectrode arrays for multiparametric, high sensitive cell based assays. Jahnke HG; Schmidt S; Frank R; Weigel W; Prönnecke C; Robitzki AA Biosens Bioelectron; 2019 Mar; 129():208-215. PubMed ID: 30337105 [TBL] [Abstract][Full Text] [Related]
9. Comparative label-free monitoring of immunotoxin efficacy in 2D and 3D mamma carcinoma in vitro models by impedance spectroscopy. Poenick S; Jahnke HG; Eichler M; Frost S; Lilie H; Robitzki AA Biosens Bioelectron; 2014 Mar; 53():370-6. PubMed ID: 24184957 [TBL] [Abstract][Full Text] [Related]
11. An autonomous CMOS hysteretic sensor for the detection of desorption-free DNA hybridization. Lee KH; Choi SH; Lee JO; Sohn MJ; Yoon JB; Cho GH Biosens Bioelectron; 2011 Jul; 26(11):4591-5. PubMed ID: 21592770 [TBL] [Abstract][Full Text] [Related]
12. Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Nguyen TA; Yin TI; Reyes D; Urban GA Anal Chem; 2013 Nov; 85(22):11068-76. PubMed ID: 24117341 [TBL] [Abstract][Full Text] [Related]
13. 3D cell-based biosensor for cell viability and drug assessment by 3D electric cell/matrigel-substrate impedance sensing. Pan Y; Hu N; Wei X; Gong L; Zhang B; Wan H; Wang P Biosens Bioelectron; 2019 Apr; 130():344-351. PubMed ID: 30266425 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic Impedance Biosensor Chips Using Sensing Layers Based on DNA-Based Self-Assembled Monolayers for Label-Free Detection of Proteins. Alsabbagh K; Hornung T; Voigt A; Sadir S; Rajabi T; Länge K Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33805676 [TBL] [Abstract][Full Text] [Related]
15. A review of electrochemical impedance as a tool for examining cell biology and subcellular mechanisms: merits, limits, and future prospects. Arman S; Tilley RD; Gooding JJ Analyst; 2024 Jan; 149(2):269-289. PubMed ID: 38015145 [TBL] [Abstract][Full Text] [Related]
16. TFT sensor array for real-time cellular characterization, stimulation, impedance measurement and optical imaging of in-vitro neural cells. Shaik FA; Ihida S; Ikeuchi Y; Tixier-Mita A; Toshiyoshi H Biosens Bioelectron; 2020 Dec; 169():112546. PubMed ID: 32911315 [TBL] [Abstract][Full Text] [Related]
17. Study of Real-Time Spatial and Temporal Behavior of Bacterial Biofilms Using 2-D Impedance Spectroscopy. Begly C; Ackart D; Mylius J; Basaraba R; Chicco AJ; Chen TW IEEE Trans Biomed Circuits Syst; 2020 Oct; 14(5):1051-1064. PubMed ID: 32746361 [TBL] [Abstract][Full Text] [Related]
18. Chronic impedance spectroscopy of an endovascular stent-electrode array. Opie NL; John SE; Rind GS; Ronayne SM; Grayden DB; Burkitt AN; May CN; O'Brien TJ; Oxley TJ J Neural Eng; 2016 Aug; 13(4):046020. PubMed ID: 27378157 [TBL] [Abstract][Full Text] [Related]
19. Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Kalmykov A; Huang C; Bliley J; Shiwarski D; Tashman J; Abdullah A; Rastogi SK; Shukla S; Mataev E; Feinberg AW; Hsia KJ; Cohen-Karni T Sci Adv; 2019 Aug; 5(8):eaax0729. PubMed ID: 31467978 [TBL] [Abstract][Full Text] [Related]