BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35081486)

  • 1. Multielectrode biosensor chip for spatial resolution screening of 3D cell models based on microcavity arrays.
    Zitzmann FD; Schmidt S; Naumann M; Belder D; Jahnke HG; Robitzki AA
    Biosens Bioelectron; 2022 Apr; 202():114010. PubMed ID: 35081486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcavity well-plate for automated parallel bioelectronic analysis of 3D cell cultures.
    Zitzmann FD; Schmidt S; Frank R; Weigel W; Meier M; Jahnke HG
    Biosens Bioelectron; 2024 Apr; 250():116042. PubMed ID: 38266619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models.
    Kloss D; Kurz R; Jahnke HG; Fischer M; Rothermel A; Anderegg U; Simon JC; Robitzki AA
    Biosens Bioelectron; 2008 May; 23(10):1473-80. PubMed ID: 18289841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug testing on 3D in vitro tissues trapped on a microcavity chip.
    Kloss D; Fischer M; Rothermel A; Simon JC; Robitzki AA
    Lab Chip; 2008 Jun; 8(6):879-84. PubMed ID: 18497906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel 96-well multielectrode array based impedimetric monitoring platform for comparative drug efficacy analysis on 2D and 3D brain tumor cultures.
    Eichler M; Jahnke HG; Krinke D; Müller A; Schmidt S; Azendorf R; Robitzki AA
    Biosens Bioelectron; 2015 May; 67():582-9. PubMed ID: 25445619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel organotypic tauopathy model on a new microcavity chip for bioelectronic label-free and real time monitoring.
    Krinke D; Jahnke HG; Mack TG; Hirche A; Striggow F; Robitzki AA
    Biosens Bioelectron; 2010 Sep; 26(1):162-8. PubMed ID: 20591644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohybrid microarrays--impedimetric biosensors with 3D in vitro tissues for toxicological and biomedical screening.
    Thielecke H; Mack A; Robitzki A
    Fresenius J Anal Chem; 2001 Jan; 369(1):23-9. PubMed ID: 11210225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FEM-based design of optical transparent indium tin oxide multielectrode arrays for multiparametric, high sensitive cell based assays.
    Jahnke HG; Schmidt S; Frank R; Weigel W; Prönnecke C; Robitzki AA
    Biosens Bioelectron; 2019 Mar; 129():208-215. PubMed ID: 30337105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative label-free monitoring of immunotoxin efficacy in 2D and 3D mamma carcinoma in vitro models by impedance spectroscopy.
    Poenick S; Jahnke HG; Eichler M; Frost S; Lilie H; Robitzki AA
    Biosens Bioelectron; 2014 Mar; 53():370-6. PubMed ID: 24184957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional (3D) cell culture monitoring: Opportunities and challenges for impedance spectroscopy.
    De León SE; Pupovac A; McArthur SL
    Biotechnol Bioeng; 2020 Apr; 117(4):1230-1240. PubMed ID: 31956986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An autonomous CMOS hysteretic sensor for the detection of desorption-free DNA hybridization.
    Lee KH; Choi SH; Lee JO; Sohn MJ; Yoon JB; Cho GH
    Biosens Bioelectron; 2011 Jul; 26(11):4591-5. PubMed ID: 21592770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes.
    Nguyen TA; Yin TI; Reyes D; Urban GA
    Anal Chem; 2013 Nov; 85(22):11068-76. PubMed ID: 24117341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D cell-based biosensor for cell viability and drug assessment by 3D electric cell/matrigel-substrate impedance sensing.
    Pan Y; Hu N; Wei X; Gong L; Zhang B; Wan H; Wang P
    Biosens Bioelectron; 2019 Apr; 130():344-351. PubMed ID: 30266425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Impedance Biosensor Chips Using Sensing Layers Based on DNA-Based Self-Assembled Monolayers for Label-Free Detection of Proteins.
    Alsabbagh K; Hornung T; Voigt A; Sadir S; Rajabi T; Länge K
    Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33805676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of electrochemical impedance as a tool for examining cell biology and subcellular mechanisms: merits, limits, and future prospects.
    Arman S; Tilley RD; Gooding JJ
    Analyst; 2024 Jan; 149(2):269-289. PubMed ID: 38015145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TFT sensor array for real-time cellular characterization, stimulation, impedance measurement and optical imaging of in-vitro neural cells.
    Shaik FA; Ihida S; Ikeuchi Y; Tixier-Mita A; Toshiyoshi H
    Biosens Bioelectron; 2020 Dec; 169():112546. PubMed ID: 32911315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of Real-Time Spatial and Temporal Behavior of Bacterial Biofilms Using 2-D Impedance Spectroscopy.
    Begly C; Ackart D; Mylius J; Basaraba R; Chicco AJ; Chen TW
    IEEE Trans Biomed Circuits Syst; 2020 Oct; 14(5):1051-1064. PubMed ID: 32746361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic impedance spectroscopy of an endovascular stent-electrode array.
    Opie NL; John SE; Rind GS; Ronayne SM; Grayden DB; Burkitt AN; May CN; O'Brien TJ; Oxley TJ
    J Neural Eng; 2016 Aug; 13(4):046020. PubMed ID: 27378157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids.
    Kalmykov A; Huang C; Bliley J; Shiwarski D; Tashman J; Abdullah A; Rastogi SK; Shukla S; Mataev E; Feinberg AW; Hsia KJ; Cohen-Karni T
    Sci Adv; 2019 Aug; 5(8):eaax0729. PubMed ID: 31467978
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.