These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35081609)

  • 41. Computational design of a polymorph for 2D III-V orthorhombic monolayers by first principles calculations: excellent anisotropic, electronic and optical properties.
    Zhao J; Zeng H; Yao G
    Phys Chem Chem Phys; 2021 Feb; 23(6):3771-3778. PubMed ID: 33554984
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prediction of 2D IV-VI semiconductors: auxetic materials with direct bandgap and strong optical absorption.
    Ren K; Ma X; Liu X; Xu Y; Huo W; Li W; Zhang G
    Nanoscale; 2022 Jun; 14(23):8463-8473. PubMed ID: 35662311
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Group 11 Transition-Metal Halide Monolayers: High Promises for Photocatalysis and Quantum Cutting.
    Huang X; Yan L; Zhou Y; Wang Y; Song HZ; Zhou L
    J Phys Chem Lett; 2021 Jan; 12(1):525-531. PubMed ID: 33377387
    [TBL] [Abstract][Full Text] [Related]  

  • 44. B
    Qi J; Wang S; Wang J; Umezawa N; Blatov VA; Hosono H
    J Phys Chem Lett; 2021 May; 12(20):4823-4832. PubMed ID: 33999633
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Janus structures of the
    Tran TA; Hai LS; Vi VTT; Nguyen CQ; Nghiem NT; Thao LTP; Hieu NN
    RSC Adv; 2023 Apr; 13(18):12153-12160. PubMed ID: 37082371
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-dimensional SiMI
    Liu ZH; Yang CL; Wang MS; Ma XG
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120013. PubMed ID: 34119771
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two-dimensional BX (X = P, As, Sb) semiconductors with mobilities approaching graphene.
    Xie M; Zhang S; Cai B; Zhu Z; Zou Y; Zeng H
    Nanoscale; 2016 Jul; 8(27):13407-13. PubMed ID: 27346538
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrathin Semiconducting Bi
    Wang B; Niu X; Ouyang Y; Zhou Q; Wang J
    J Phys Chem Lett; 2018 Feb; 9(3):487-490. PubMed ID: 29323907
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The optical properties and carrier mobility of MH
    Yang Y; Shang J; Li Z; Lu H; Ma Y
    Phys Chem Chem Phys; 2021 Sep; 23(33):18078-18084. PubMed ID: 34396375
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A first-principles prediction of novel Janus T'-RuXY (X/Y = S, Se, Te) monolayers: structural properties and electronic structures.
    Hien ND
    RSC Adv; 2022 Aug; 12(35):22671-22677. PubMed ID: 36105970
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tuning the structural, electronic and dynamical properties of Janus M
    Eren I; Akgenc B
    Phys Chem Chem Phys; 2021 Sep; 23(37):21139-21147. PubMed ID: 34528046
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of Anderson's rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures.
    Xu K; Xu Y; Zhang H; Peng B; Shao H; Ni G; Li J; Yao M; Lu H; Zhu H; Soukoulis CM
    Phys Chem Chem Phys; 2018 Dec; 20(48):30351-30364. PubMed ID: 30488929
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two-dimensional XC
    Bu H; Liu X; Yuan H; Yuan X; Zhao M
    Phys Chem Chem Phys; 2021 Dec; 23(46):26468-26475. PubMed ID: 34806719
    [TBL] [Abstract][Full Text] [Related]  

  • 54. First-principles study of the structural and electronic properties of tetragonal ZrOX (X = S, Se, and Te) monolayers and their vdW heterostructures for applications in optoelectronics and photocatalysis.
    Said I; Gueddida S; Barhoumi M; Pascale F; Said M; Lebègue S
    J Chem Phys; 2023 Mar; 158(9):094708. PubMed ID: 36889946
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anisotropic Rashba splitting in Pt-based Janus monolayers PtXY (X,Y = S, Se, or Te).
    Sino PAL; Feng LY; Villaos RAB; Cruzado HN; Huang ZQ; Hsu CH; Chuang FC
    Nanoscale Adv; 2021 Nov; 3(23):6608-6616. PubMed ID: 36132660
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Theoretical prediction of two-dimensional BC
    Bafekry A; Naseri M; Faraji M; Fadlallah MM; Hoat DM; Jappor HR; Ghergherehchi M; Gogova D; Afarideh H
    Sci Rep; 2022 Dec; 12(1):22269. PubMed ID: 36564522
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Strain Tunable Bandgap and High Carrier Mobility in SiAs and SiAs
    Bai S; Niu CY; Yu W; Zhu Z; Cai X; Jia Y
    Nanoscale Res Lett; 2018 Dec; 13(1):404. PubMed ID: 30542773
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Two-dimensional H- and F-BX (X = O, S, Se, and Te) photocatalysts with ultrawide bandgap and enhanced photocatalytic performance for water splitting.
    Lu Q; Chen X; Zhang B; Lin J
    RSC Adv; 2023 Jan; 13(4):2301-2310. PubMed ID: 36741152
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two-dimensional type-II g-C
    Hu L; Yi W; Rao T; Tang J; Hu C; Yin H; Hao H; Zhang L; Li C; Li T
    Phys Chem Chem Phys; 2020 Jul; 22(27):15649-15657. PubMed ID: 32618305
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons.
    Zhang X; Zhao X; Wu D; Jing Y; Zhou Z
    Nanoscale; 2015 Oct; 7(38):16020-5. PubMed ID: 26370829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.