These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35081709)

  • 1. Establishment of Green- and Red-Fluorescent Reporter Proteins Based on the Fluorescence-Activating and Absorption-Shifting Tag for Use in Acetogenic and Solventogenic Anaerobes.
    Flaiz M; Baur T; Gaibler J; Kröly C; Dürre P
    ACS Synth Biol; 2022 Feb; 11(2):953-967. PubMed ID: 35081709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Strong Anaerobic Fluorescent Reporters for Clostridium acetobutylicum and Clostridium ljungdahlii Using HaloTag and SNAP-tag Proteins.
    Charubin K; Streett H; Papoutsakis ET
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Strongly Fluorescing Anaerobic Reporter and Protein-Tagging System for
    Streett HE; Kalis KM; Papoutsakis ET
    Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31076434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of the biocommodities butanol and acetone from methanol with fluorescent FAST-tagged proteins using metabolically engineered strains of Eubacterium limosum.
    Flaiz M; Ludwig G; Bengelsdorf FR; Dürre P
    Biotechnol Biofuels; 2021 May; 14(1):117. PubMed ID: 33971948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of propionate using metabolically engineered strains of Clostridium saccharoperbutylacetonicum.
    Baur T; Wentzel A; Dürre P
    Appl Microbiol Biotechnol; 2022 Nov; 106(22):7547-7562. PubMed ID: 36282302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an oxygen-independent flavin mononucleotide-based fluorescent reporter system in Clostridium beijerinckii and its potential applications.
    Seo SO; Lu T; Jin YS; Blaschek HP
    J Biotechnol; 2018 Jan; 265():119-126. PubMed ID: 29158189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs.
    Cho C; Lee SY
    Biotechnol Bioeng; 2017 Feb; 114(2):374-383. PubMed ID: 27531464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autotrophic lactate production from H
    Mook A; Beck MH; Baker JP; Minton NP; Dürre P; Bengelsdorf FR
    Appl Microbiol Biotechnol; 2022 Feb; 106(4):1447-1458. PubMed ID: 35092454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.
    Wasels F; Jean-Marie J; Collas F; López-Contreras AM; Lopes Ferreira N
    J Microbiol Methods; 2017 Sep; 140():5-11. PubMed ID: 28610973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved CRISPR/Cas9 Tools for the Rapid Metabolic Engineering of
    Wilding-Steele T; Ramette Q; Jacottin P; Soucaille P
    Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33918190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production.
    Lütke-Eversloh T; Bahl H
    Curr Opin Biotechnol; 2011 Oct; 22(5):634-47. PubMed ID: 21377350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of putative genes for the production of medium-chained acids and alcohols in autotrophic acetogenic bacteria.
    Wirth S; Dürre P
    Metab Eng; 2021 Jul; 66():296-307. PubMed ID: 33894339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stringency of Synthetic Promoter Sequences in Clostridium Revealed and Circumvented by Tuning Promoter Library Mutation Rates.
    Mordaka PM; Heap JT
    ACS Synth Biol; 2018 Feb; 7(2):672-681. PubMed ID: 29320851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cap0037, a Novel Global Regulator of Clostridium acetobutylicum Metabolism.
    Nguyen NP; Linder S; Flitsch SK; Schiel-Bengelsdorf B; Dürre P; Soucaille P
    mBio; 2016 Oct; 7(5):. PubMed ID: 27703070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Shuttle Plasmid That Stably Replicates in Clostridium acetobutylicum.
    Lee SH; Kwon MA; Choi S; Kim S; Kim J; Shin YA; Kim KH
    J Microbiol Biotechnol; 2015 Oct; 25(10):1702-8. PubMed ID: 26032368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation.
    Groher A; Weuster-Botz D
    J Biotechnol; 2016 Jun; 228():82-94. PubMed ID: 27107467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a High-Efficiency Transformation Method and Implementation of Rational Metabolic Engineering for the Industrial Butanol Hyperproducer Clostridium saccharoperbutylacetonicum Strain N1-4.
    Herman NA; Li J; Bedi R; Turchi B; Liu X; Miller MJ; Zhang W
    Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27836845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A clean in-frame knockout system for gene deletion in Acetobacterium woodii.
    Baker JP; Sáez-Sáez J; Jensen SI; Nielsen AT; Minton NP
    J Biotechnol; 2022 Jul; 353():9-18. PubMed ID: 35659892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sporulation in solventogenic and acetogenic clostridia.
    Diallo M; Kengen SWM; López-Contreras AM
    Appl Microbiol Biotechnol; 2021 May; 105(9):3533-3557. PubMed ID: 33900426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.