These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35081713)

  • 1. Nanopumps without Pressure Gradients: Ultrafast Transport of Water in Patterned Nanotubes.
    Papadopoulou E; Megaridis CM; Walther JH; Koumoutsakos P
    J Phys Chem B; 2022 Jan; 126(3):660-669. PubMed ID: 35081713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast Propulsion of Water Nanodroplets on Patterned Graphene.
    Papadopoulou E; Megaridis CM; Walther JH; Koumoutsakos P
    ACS Nano; 2019 May; 13(5):5465-5472. PubMed ID: 31025854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water transport and purification in nanochannels controlled by asymmetric wettability.
    Chen Q; Meng L; Li Q; Wang D; Guo W; Shuai Z; Jiang L
    Small; 2011 Aug; 7(15):2225-31. PubMed ID: 21608126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How fast does water flow in carbon nanotubes?
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2013 Mar; 138(9):094701. PubMed ID: 23485316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actuating Water Droplets on Graphene via Surface Wettability Gradients.
    Liu Q; Xu B
    Langmuir; 2015 Aug; 31(33):9070-5. PubMed ID: 26244449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-dependent water transport across nanopores of carbon nanotubes: toward selective gating upon temperature regulation.
    Zhao K; Wu H
    Phys Chem Chem Phys; 2015 Apr; 17(16):10343-7. PubMed ID: 25805425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hormones Nanofiltration in Carbon Nanotubes and Boron Nitride Nanotubes Using Uniform External Electric Field Through Molecular Dynamics.
    Dos Santos Cavaleiro RM; da Silva Arouche T; Martins Tanoue PS; Sá Pereira TS; de Carvalho Junior RN; Paranhos Costa FL; de Andrade Filho TS; Dos Santos Borges R; de Jesus Chaves Neto AM
    J Nanosci Nanotechnol; 2021 Nov; 21(11):5499-5509. PubMed ID: 33980360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water thermophoresis in carbon nanotubes: the interplay between thermophoretic and friction forces.
    Oyarzua E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2018 Jan; 20(5):3672-3677. PubMed ID: 29344599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous propulsion of a water nanodroplet induced by a wettability gradient: a molecular dynamics simulation study.
    Mahmood A; Chen S; Chen L; Chen C; Liu D; Weng D; Wang J
    Phys Chem Chem Phys; 2020 Feb; 22(8):4805-4814. PubMed ID: 32068225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of patterned solid surfaces with highly controllable wettability.
    Wang M; Guo CF; Wang X; Xiang B; Qiu M; He T; Yang H; Chen Y; Dong J; Liu Q; Ruan S
    RSC Adv; 2021 Sep; 11(51):31877-31883. PubMed ID: 35495539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake and withdrawal of droplets from carbon nanotubes.
    Schebarchov D; Hendy SC
    Nanoscale; 2011 Jan; 3(1):134-41. PubMed ID: 20877790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Origin of Water Flow through Carbon Nanotubes.
    Su J; Yang K
    Chemphyschem; 2015 Nov; 16(16):3488-92. PubMed ID: 26346506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomistic simulations of electrowetting in carbon nanotubes.
    Kutana A; Giapis KP
    Nano Lett; 2006 Apr; 6(4):656-61. PubMed ID: 16608260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wettability and Applications of Nanochannels.
    Zhang X; Liu H; Jiang L
    Adv Mater; 2019 Feb; 31(5):e1804508. PubMed ID: 30345614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2012 Jul; 137(4):044102. PubMed ID: 22852592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired functional SLIPSs and wettability gradient surfaces and their synergistic cooperation and opportunities for enhanced condensate and fluid transport.
    Lv F; Zhao F; Cheng D; Dong Z; Jia H; Xiao X; Orejon D
    Adv Colloid Interface Sci; 2022 Jan; 299():102564. PubMed ID: 34861513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting Transitions of Liquid Gallium Film on Nanopillar-Decorated Graphene Surfaces.
    Wang J; Li T; Li Y; Duan Y; Jiang Y; Arandiyan H; Li H
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30241288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energetics of carbon nanotube association in pure and aqueous ionic solutions.
    Ou S; Patel S; Bauer BA
    J Phys Chem B; 2012 Jul; 116(28):8154-68. PubMed ID: 22780909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterned surface anchoring of nematic droplets at miscible liquid-liquid interfaces.
    Wang X; Zhou Y; Kim YK; Miller DS; Zhang R; Martinez-Gonzalez JA; Bukusoglu E; Zhang B; Brown TM; de Pablo JJ; Abbott NL
    Soft Matter; 2017 Aug; 13(34):5714-5723. PubMed ID: 28752888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic insight into surface wetting: relations between interfacial water structure and the underlying lattice constant.
    Zhu C; Li H; Huang Y; Zeng XC; Meng S
    Phys Rev Lett; 2013 Mar; 110(12):126101. PubMed ID: 25166822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.