These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35081753)

  • 1. Optofluidic Platform for Rapid On-Chip Analysis of Total Phosphorus in Surface Water Using Absorption Spectrometry.
    Zhao K; Li C; Wan L; Luo F; Cheng Z; Duan J; Wang N
    Appl Spectrosc; 2022 May; 76(5):599-608. PubMed ID: 35081753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Integrated Optofluidic Platform Enabling Total Phosphorus On-Chip Digestion and Online Real-Time Detection.
    Li C; Wang B; Wan H; He R; Li Q; Yang S; Dai W; Wang N
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31906410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photothermal Localization in an Optofluidic Microreactor for Rapid Pretreatment toward Online Pollutant Analysis.
    Li C; Wan L; Wang N; Chen B; Luo F; Cheng Z; Zhang M
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40939-40950. PubMed ID: 36049235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator.
    Zhu JM; Shi Y; Zhu XQ; Yang Y; Jiang FH; Sun CJ; Zhao WH; Han XT
    Lab Chip; 2017 Nov; 17(23):4025-4030. PubMed ID: 29090721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional optofluidic lab-on-chip platform for Raman and fluorescence spectroscopic microfluidic analysis.
    Persichetti G; Grimaldi IA; Testa G; Bernini R
    Lab Chip; 2017 Jul; 17(15):2631-2639. PubMed ID: 28664956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions.
    Wang N; Tan F; Zhao Y; Tsoi CC; Fan X; Yu W; Zhang X
    Sci Rep; 2016 Jun; 6():28928. PubMed ID: 27352840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidic systems enabling detection in real samples: A review.
    Fernandez-Cuesta I; Llobera A; Ramos-Payán M
    Anal Chim Acta; 2022 Feb; 1192():339307. PubMed ID: 35057965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Sensitive, Label-Free Detection of 2,4-Dichlorophenoxyacetic Acid Using an Optofluidic Chip.
    Feng X; Zhang G; Chin LK; Liu AQ; Liedberg B
    ACS Sens; 2017 Jul; 2(7):955-960. PubMed ID: 28750515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optofluidic-tunable color filters and spectroscopy based on liquid-crystal microflows.
    Cuennet JG; Vasdekis AE; Psaltis D
    Lab Chip; 2013 Jul; 13(14):2721-6. PubMed ID: 23752198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 3D-cascade-microlens optofluidic chip for refractometry with adjustable sensitivity.
    Tang J; Qiu G; Zhang X; Wang J
    Lab Chip; 2021 Sep; 21(19):3784-3792. PubMed ID: 34581391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New optofluidic based lab-on-a-chip device for the real-time fluoride analysis.
    Bhat MP; Kurkuri M; Losic D; Kigga M; Altalhi T
    Anal Chim Acta; 2021 May; 1159():338439. PubMed ID: 33867030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomous and In Situ Ocean Environmental Monitoring on Optofluidic Platform.
    Wang F; Zhu J; Chen L; Zuo Y; Hu X; Yang Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31936398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic jet waveguide for laser-induced fluorescence spectroscopy.
    Persichetti G; Testa G; Bernini R
    Opt Lett; 2012 Dec; 37(24):5115-7. PubMed ID: 23258023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An automated 3D-printed smartphone platform integrated with optoelectrowetting (OEW) microfluidic chip for on-site monitoring of viable algae in water.
    Lee S; Thio SK; Park SY; Bae S
    Harmful Algae; 2019 Sep; 88():101638. PubMed ID: 31582154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an online analyzer for determination of total phosphorus in industrial circulating cooling water with UV photooxidation digestion and spectrophotometric detection.
    Xu J; Lin K; Huang Y; Guo Q; Li H; Yuan D
    Talanta; 2019 Aug; 201():74-81. PubMed ID: 31122463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical detection systems on microfluidic chips.
    Gai H; Li Y; Yeung ES
    Top Curr Chem; 2011; 304():171-201. PubMed ID: 21516387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optofluidic detection setup for multi-parametric analysis of microbiological samples in droplets.
    Hengoju S; Wohlfeil S; Munser AS; Boehme S; Beckert E; Shvydkiv O; Tovar M; Roth M; Rosenbaum MA
    Biomicrofluidics; 2020 Mar; 14(2):024109. PubMed ID: 32547676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconfigurable Integrated Optofluidic Droplet Laser Arrays.
    Zhang H; Palit P; Liu Y; Vaziri S; Sun Y
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):26936-26942. PubMed ID: 32437123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-optofluidics: achieving dynamic control on-chip.
    Soltani M; Inman JT; Lipson M; Wang MD
    Opt Express; 2012 Sep; 20(20):22314-26. PubMed ID: 23037380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.