These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 35082035)
1. Transcriptomic analysis of interactions between Lymantria dispar larvae and carvacrol. Chen YZ; Li T; Yang J; Li QM; Zhang GC; Zhang J Pestic Biochem Physiol; 2022 Feb; 181():105012. PubMed ID: 35082035 [TBL] [Abstract][Full Text] [Related]
2. The impact of carvacrol on the larval gut bacterial structure and function of Yang J; Chen YZ; Zhang GC Front Microbiol; 2024; 15():1417598. PubMed ID: 39360327 [TBL] [Abstract][Full Text] [Related]
3. Larvicidal activity and insecticidal mechanism of Chelidonium majus on Lymantria dispar. Zou C; Lv C; Wang Y; Cao C; Zhang G Pestic Biochem Physiol; 2017 Oct; 142():123-132. PubMed ID: 29107235 [TBL] [Abstract][Full Text] [Related]
4. Insights into the Temporal Gene Expression Pattern in Lymantria dispar Larvae During the Baculovirus Induced Hyperactive Stage. Bhattarai UR; Katuwal Bhattarai M; Li F; Wang D Virol Sin; 2018 Aug; 33(4):345-358. PubMed ID: 30046995 [TBL] [Abstract][Full Text] [Related]
5. Integration of miRNA and mRNA expression profiles in Asian spongy moth Lymantria dispar in response to cyantraniliprole. Zhang C; Liu P; Sun L; Cao C Pestic Biochem Physiol; 2023 Apr; 191():105364. PubMed ID: 36963953 [TBL] [Abstract][Full Text] [Related]
6. Sanguinarine in Chelidonium majus induced antifeeding and larval lethality by suppressing food intake and digestive enzymes in Lymantria dispar. Zou C; Wang Y; Zou H; Ding N; Geng N; Cao C; Zhang G Pestic Biochem Physiol; 2019 Jan; 153():9-16. PubMed ID: 30744901 [TBL] [Abstract][Full Text] [Related]
7. Effects of elevated CO Faidah AN; Zhao H; Hasibagen ; Sun L; Cao C Comp Biochem Physiol C Toxicol Pharmacol; 2021 Oct; 248():109079. PubMed ID: 34015537 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the transcriptome of the Asian gypsy moth Lymantria dispar identifies numerous transcripts associated with insecticide resistance. Cao C; Sun L; Wen R; Shang Q; Ma L; Wang Z Pestic Biochem Physiol; 2015 Mar; 119():54-61. PubMed ID: 25868817 [TBL] [Abstract][Full Text] [Related]
9. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis) Larvae through Transcriptomic Analysis. Yu HZ; Wen DF; Wang WL; Geng L; Zhang Y; Xu JP Int J Mol Sci; 2015 Sep; 16(9):21873-96. PubMed ID: 26378520 [TBL] [Abstract][Full Text] [Related]
10. The effects of carvacrol on development and gene expression profiles in Spodoptera frugiperda. Liu J; Lin Y; Huang Y; Liu L; Cai X; Lin J; Shu B Pestic Biochem Physiol; 2023 Sep; 195():105539. PubMed ID: 37666589 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomic analysis of interactions between Hyphantria cunea larvae and nucleopolyhedrovirus. Sun L; Liu P; Sun S; Yan S; Cao C Pest Manag Sci; 2019 Apr; 75(4):1024-1033. PubMed ID: 30230189 [TBL] [Abstract][Full Text] [Related]
12. Silencing Br-C impairs larval development and chitin synthesis in Lymantria dispar larvae. Ding N; Wang Z; Geng N; Zou H; Zhang G; Cao C; Li X; Zou C J Insect Physiol; 2020 Apr; 122():104041. PubMed ID: 32126216 [TBL] [Abstract][Full Text] [Related]
13. Effect of fluoranthene on antioxidative defense in different tissues of Lymantria dispar and Euproctis chrysorrhoea larvae. Filipović A; Mrdaković M; Ilijin L; Vlahović M; Todorović D; Grčić A; Perić-Mataruga V Comp Biochem Physiol C Toxicol Pharmacol; 2019 Oct; 224():108565. PubMed ID: 31276812 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome profiling reveals differential gene expression of detoxification enzymes in Sitophilus zeamais responding to terpinen-4-ol fumigation. Huang Y; Liao M; Yang Q; Xiao J; Hu Z; Zhou L; Cao H Pestic Biochem Physiol; 2018 Jul; 149():44-53. PubMed ID: 30033015 [TBL] [Abstract][Full Text] [Related]
15. Functional identification and characterization of GST genes in the Asian gypsy moth in response to poplar secondary metabolites. Ma J; Sun L; Zhao H; Wang Z; Zou L; Cao C Pestic Biochem Physiol; 2021 Jul; 176():104860. PubMed ID: 34119211 [TBL] [Abstract][Full Text] [Related]
16. Digestive enzyme activity and macromolecule content in the hemolymph of differentially adapted Lymantria dispar L. populations after short-term increases in ambient temperature. Grčić A; Ilijin L; Filipović A; Matić D; Mrdaković M; Todorović D; Vlahović M; Perić-Mataruga V Environ Res; 2023 Nov; 236(Pt 1):116461. PubMed ID: 37343759 [TBL] [Abstract][Full Text] [Related]
17. De novo transcriptome characterization of the ghost moth, Thitarodes pui, and elevation-based differences in the gene expression of its larvae. Wu W; Sun H; Guo J; Jiang F; Liu X; Zhang G Gene; 2015 Dec; 574(1):95-105. PubMed ID: 26235680 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome analysis of differentially expressed genes involved in innate immunity following Bacillus thuringiensis challenge in Bombyx mori larvae. Wu G; Yi Y Mol Immunol; 2018 Nov; 103():220-228. PubMed ID: 30316186 [TBL] [Abstract][Full Text] [Related]
19. The susceptibility of Lymantria dispar larvae to Beauveria bassiana under Cd stress: A multi-omics study. Jiang D; Wu S; Tan M; Jiang H; Yan S Environ Pollut; 2021 May; 276():116740. PubMed ID: 33611203 [TBL] [Abstract][Full Text] [Related]
20. Comparative transcriptome analysis of false codling moth, Thaumatotibia leucotreta in response to high and low-temperature treatments. Mwando NL; Khamis FM; Ndlela S; Meyhöfer R; Ombura FLO; Wamalwa M; Subramanian S; Mohamed SA Comp Biochem Physiol Part D Genomics Proteomics; 2024 Jun; 50():101199. PubMed ID: 38330807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]