These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35082065)

  • 1. Heat shock in Cronobacter sakazakii induces direct protection and cross-protection against simulated gastric fluid stress.
    Niu H; MingzheYang ; Qi Y; Liu Y; Wang X; Dong Q
    Food Microbiol; 2022 May; 103():103948. PubMed ID: 35082065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of heat shock on the fatty acid and protein profiles of Cronobacter sakazakii BCRC 13988 as well as its growth and survival in the presence of various carbon, nitrogen sources and disinfectants.
    Li PT; Hsiao WL; Yu RC; Chou CC
    Food Microbiol; 2013 Dec; 36(2):142-8. PubMed ID: 24010592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of resistance in Cronobacter sakazakii ATCC 29544 to thermal and nonthermal processes after exposure to stressing environmental conditions.
    Arroyo C; Cebrián G; Condón S; Pagán R
    J Appl Microbiol; 2012 Mar; 112(3):561-70. PubMed ID: 22221523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-lethal heat treatment affects the tolerance of Cronobacter sakazakii BCRC 13988 to various organic acids, simulated gastric juice and bile solution.
    Hsiao WL; Ho WL; Chou CC
    Int J Food Microbiol; 2010 Dec; 144(2):280-4. PubMed ID: 21074886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of heat shock on the response of Cronobacter sakazakii to subsequent lethal stresses.
    Chang CH; Chiang ML; Chou CC
    Foodborne Pathog Dis; 2010 Jan; 7(1):71-6. PubMed ID: 19821740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of temperature and length of heat shock treatment on the thermal tolerance and cell leakage of Cronobacter sakazakii BCRC 13988.
    Chang CH; Chiang ML; Chou CC
    Int J Food Microbiol; 2009 Sep; 134(3):184-9. PubMed ID: 19625097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ethanol shock pretreatment on the tolerance of Cronobacter sakazakii BCRC 13988 exposed to subsequent lethal stresses.
    Huang YT; Cheng KC; Yu RC; Chou CC
    Foodborne Pathog Dis; 2013 Feb; 10(2):165-70. PubMed ID: 23441915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat shock effects on the viability of Cronobacter sakazakii during the dehydration, fermentation, and storage of lactic cultured milk products.
    Wan-Ling H; Chang CH; Chou CC
    Food Microbiol; 2010 Apr; 27(2):280-5. PubMed ID: 20141947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examine the Correlation between Heat Shock Protein IbpA and Heat Tolerance in Cronobacter sakazakii.
    Zhao ZJ; Wang B; Yuan J; Liang HY; Dong SG; Zeng M
    Biomed Environ Sci; 2017 Aug; 30(8):606-610. PubMed ID: 28807101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of 405-nm light-emitting diode on environmental tolerance of Cronobacter sakazakii in powdered infant formula.
    Zheng Z; Xie Y; Ma S; Tu J; Li J; Liang S; Xu Y; Shi C
    Food Res Int; 2021 Jun; 144():110343. PubMed ID: 34053539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat adaptation and survival of Cronobacter spp. (formerly Enterobacter sakazakii).
    Arku B; Fanning S; Jordan K
    Foodborne Pathog Dis; 2011 Sep; 8(9):975-81. PubMed ID: 21542776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of trans-cinnamaldehyde on reducing resistance to environmental stresses in Cronobacter sakazakii.
    Amalaradjou MA; Venkitanarayanan K
    Foodborne Pathog Dis; 2011 Mar; 8(3):403-9. PubMed ID: 21114424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress tolerant virulent strains of Cronobacter sakazakii from food.
    Fakruddin M; Rahaman M; Ahmed MM; Hoque MM
    Biol Res; 2014 Nov; 47(1):63. PubMed ID: 25723712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymorphisms in rpoS and stress tolerance heterogeneity in natural isolates of Cronobacter sakazakii.
    Alvarez-Ordóñez A; Begley M; Hill C
    Appl Environ Microbiol; 2012 Jun; 78(11):3975-84. PubMed ID: 22447602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of Cronobacter sakazakii in reconstituted infant formula by combination of thymoquinone and mild heat.
    Shi C; Jia Z; Chen Y; Yang M; Liu X; Sun Y; Zheng Z; Zhang X; Song K; Cui L; Baloch AB; Xia X
    J Appl Microbiol; 2015 Dec; 119(6):1700-6. PubMed ID: 26440735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of Cronobacter sakazakii by manothermosonication in buffer and milk.
    Arroyo C; Cebrián G; Pagán R; Condón S
    Int J Food Microbiol; 2011 Nov; 151(1):21-8. PubMed ID: 21872958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UV-C inactivation of Cronobacter sakazakii.
    Arroyo C; Gayán E; Pagán R; Condón S
    Foodborne Pathog Dis; 2012 Oct; 9(10):907-14. PubMed ID: 22989171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat Tolerances of Salmonella, Cronobacter sakazakii, and Pediococcus acidilactici Inoculated into Galactooligosaccharide.
    Bang J; Choi M; Jeong H; Lee S; Kim Y; Ryu JH; Kim H
    J Food Prot; 2017 Jul; 80(7):1123-1127. PubMed ID: 28581334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of
    Chu Z; Hu X; Wang X; Wu J; Dai T; Wang X
    Can J Microbiol; 2019 Dec; 65(12):922-929. PubMed ID: 31525298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of radio-frequency dielectric heating system for destruction of Cronobacter sakazakii and Salmonella species in nonfat dry milk.
    Michael M; Phebus RK; Thippareddi H; Subbiah J; Birla SL; Schmidt KA
    J Dairy Sci; 2014 Dec; 97(12):7316-24. PubMed ID: 25262184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.