These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 35082186)

  • 1. Metabolism in Human Pluripotent Stem Cells and Cardiomyocytes for Regenerative Therapy.
    Umei TC; Tohyama S
    Keio J Med; 2022 Sep; 71(3):55-61. PubMed ID: 35082186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism-based cardiomyocytes production for regenerative therapy.
    Umei TC; Tohyama S; Fukuda K
    J Mol Cell Cardiol; 2023 Mar; 176():11-20. PubMed ID: 36681267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction to stem cells.
    Tian Z; Yu T; Liu J; Wang T; Higuchi A
    Prog Mol Biol Transl Sci; 2023; 199():3-32. PubMed ID: 37678976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concise Review: Genetic and Epigenetic Regulation of Cardiac Differentiation from Human Pluripotent Stem Cells.
    Fujita J; Tohyama S; Kishino Y; Okada M; Morita Y
    Stem Cells; 2019 Aug; 37(8):992-1002. PubMed ID: 31021504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the human pluripotent stem cell microenvironment to direct cell fate.
    Hazeltine LB; Selekman JA; Palecek SP
    Biotechnol Adv; 2013 Nov; 31(7):1002-19. PubMed ID: 23510904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiomyocytes from human pluripotent stem cells in regenerative medicine and drug discovery.
    Braam SR; Passier R; Mummery CL
    Trends Pharmacol Sci; 2009 Oct; 30(10):536-45. PubMed ID: 19762090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes.
    van den Heuvel NH; van Veen TA; Lim B; Jonsson MK
    J Mol Cell Cardiol; 2014 Feb; 67():12-25. PubMed ID: 24370890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human pluripotent stem cell-derived cardiomyocytes as research and therapeutic tools.
    Acimovic I; Vilotic A; Pesl M; Lacampagne A; Dvorak P; Rotrekl V; Meli AC
    Biomed Res Int; 2014; 2014():512831. PubMed ID: 24800237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic analysis of feeder-free culture system for maintaining naïve-state pluripotency in human pluripotent stem cells.
    Isono W; Kawasaki T; Ichida JK; Nagasaka K; Hiraike O; Umezawa A; Akutsu H
    Stem Cell Investig; 2023; 10():10. PubMed ID: 37155477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current applications of human pluripotent stem cells: possibilities and challenges.
    Ho PJ; Yen ML; Yet SF; Yen BL
    Cell Transplant; 2012; 21(5):801-14. PubMed ID: 22449556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes.
    Hemmi N; Tohyama S; Nakajima K; Kanazawa H; Suzuki T; Hattori F; Seki T; Kishino Y; Hirano A; Okada M; Tabei R; Ohno R; Fujita C; Haruna T; Yuasa S; Sano M; Fujita J; Fukuda K
    Stem Cells Transl Med; 2014 Dec; 3(12):1473-83. PubMed ID: 25355733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yes-Associated Protein and PDZ Binding Motif: A Critical Signaling Pathway in the Control of Human Pluripotent Stem Cells Self-Renewal and Differentiation.
    Shi J; Farzaneh M; Khoshnam SE
    Cell Reprogram; 2020 Apr; 22(2):55-61. PubMed ID: 32125897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells for Heart Failure: A State-of-the-Art Review.
    Kishino Y; Tohyama S; Morita Y; Soma Y; Tani H; Okada M; Kanazawa H; Fukuda K
    J Card Fail; 2023 Apr; 29(4):503-513. PubMed ID: 37059512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directing cardiomyogenic differentiation of human pluripotent stem cells by plasmid-based transient overexpression of cardiac transcription factors.
    Hartung S; Schwanke K; Haase A; David R; Franz WM; Martin U; Zweigerdt R
    Stem Cells Dev; 2013 Apr; 22(7):1112-25. PubMed ID: 23157212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Making cardiomyocytes: how mechanical stimulation can influence differentiation of pluripotent stem cells.
    Geuss LR; Suggs LJ
    Biotechnol Prog; 2013; 29(5):1089-96. PubMed ID: 23956196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming.
    Nishimura K; Fukuda A; Hisatake K
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in culture and manipulation of human pluripotent stem cells.
    Qian X; Villa-Diaz LG; Krebsbach PH
    J Dent Res; 2013 Nov; 92(11):956-62. PubMed ID: 23934156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systemic evaluation of cardiac differentiation from mRNA reprogrammed human induced pluripotent stem cells.
    Mehta A; Verma V; Nandihalli M; Ramachandra CJ; Sequiera GL; Sudibyo Y; Chung Y; Sun W; Shim W
    PLoS One; 2014; 9(7):e103485. PubMed ID: 25068310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concise Review: Kidney Generation with Human Pluripotent Stem Cells.
    Morizane R; Miyoshi T; Bonventre JV
    Stem Cells; 2017 Nov; 35(11):2209-2217. PubMed ID: 28869686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable manufacturing of clinical-grade differentiated cardiomyocytes derived from human-induced pluripotent stem cells for regenerative therapy.
    Morita Y; Kishino Y; Fukuda K; Tohyama S
    Cell Prolif; 2022 Aug; 55(8):e13248. PubMed ID: 35534945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.