These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Ultrashort echo time magnetic resonance elastography for quantification of the mechanical properties of short T2 tissues via optimal control-based radiofrequency pulses. Sango-Solanas P; Tse Ve Koon K; Van Reeth E; Nicolle S; Palierne JF; Caussy C; Beuf O NMR Biomed; 2024 Nov; 37(11):e5210. PubMed ID: 38993021 [TBL] [Abstract][Full Text] [Related]
4. Rapid acquisition of multifrequency, multislice and multidirectional MR elastography data with a fractionally encoded gradient echo sequence. Garteiser P; Sahebjavaher RS; Ter Beek LC; Salcudean S; Vilgrain V; Van Beers BE; Sinkus R NMR Biomed; 2013 Oct; 26(10):1326-35. PubMed ID: 23712852 [TBL] [Abstract][Full Text] [Related]
5. Unipolar MR elastography: Theory, numerical analysis and implementation. Guenthner C; Sethi S; Troelstra M; van Gorkum RJH; Gastl M; Sinkus R; Kozerke S NMR Biomed; 2020 Jan; 33(1):e4138. PubMed ID: 31664745 [TBL] [Abstract][Full Text] [Related]
6. Constant gradient elastography with optimal control RF pulses. Van Reeth E; Lefebvre PM; Ratiney H; Lambert SA; Tesch M; Brusseau E; Grenier D; Beuf O; Glaser SJ; Sugny D; Tse-Ve-Koon K J Magn Reson; 2018 Sep; 294():153-161. PubMed ID: 30053754 [TBL] [Abstract][Full Text] [Related]
7. Magnetic resonance elastography of the human brain using a multiphase DENSE acquisition. Strasser J; Haindl MT; Stollberger R; Fazekas F; Ropele S Magn Reson Med; 2019 Jun; 81(6):3578-3587. PubMed ID: 30693964 [TBL] [Abstract][Full Text] [Related]
8. Active control of the spatial MRI phase distribution with optimal control theory. Lefebvre PM; Van Reeth E; Ratiney H; Beuf O; Brusseau E; Lambert SA; Glaser SJ; Sugny D; Grenier D; Tse Ve Koon K J Magn Reson; 2017 Aug; 281():82-93. PubMed ID: 28558274 [TBL] [Abstract][Full Text] [Related]
10. Fast 3D MR elastography of the whole brain using spiral staircase: Data acquisition, image reconstruction, and joint deblurring. Peng X; Sui Y; Trzasko JD; Glaser KJ; Huston J; Ehman RL; Pipe JG Magn Reson Med; 2021 Oct; 86(4):2011-2024. PubMed ID: 34096097 [TBL] [Abstract][Full Text] [Related]
11. Exploration of highly accelerated magnetic resonance elastography using high-density array coils. Bosshard JC; Yallapragada N; McDougall MP; Wright SM Quant Imaging Med Surg; 2017 Apr; 7(2):195-204. PubMed ID: 28516045 [TBL] [Abstract][Full Text] [Related]
12. Sample interval modulation for the simultaneous acquisition of displacement vector data in magnetic resonance elastography: theory and application. Klatt D; Yasar TK; Royston TJ; Magin RL Phys Med Biol; 2013 Dec; 58(24):8663-75. PubMed ID: 24256743 [TBL] [Abstract][Full Text] [Related]
13. Magnetic resonance elastography of the brain: A study of feasibility and reproducibility using an ergonomic pillow-like passive driver. Huang X; Chafi H; Matthews KL; Carmichael O; Li T; Miao Q; Wang S; Jia G Magn Reson Imaging; 2019 Jun; 59():68-76. PubMed ID: 30858002 [TBL] [Abstract][Full Text] [Related]
14. Viscoelasticity of children and adolescent brains through MR elastography. Ozkaya E; Fabris G; Macruz F; Suar ZM; Abderezaei J; Su B; Laksari K; Wu L; Camarillo DB; Pauly KB; Wintermark M; Kurt M J Mech Behav Biomed Mater; 2021 Mar; 115():104229. PubMed ID: 33387852 [TBL] [Abstract][Full Text] [Related]
15. Concurrent 3D acquisition of diffusion tensor imaging and magnetic resonance elastography displacement data (DTI-MRE): Theory and in vivo application. Yin Z; Kearney SP; Magin RL; Klatt D Magn Reson Med; 2017 Jan; 77(1):273-284. PubMed ID: 26787007 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous acquisition of magnetic resonance elastography of the supraspinatus and the trapezius muscles. Ito D; Numano T; Takamoto K; Ueki T; Habe T; Igarashi K; Mizuhara K; Nishijo H Magn Reson Imaging; 2019 Apr; 57():95-102. PubMed ID: 30465866 [TBL] [Abstract][Full Text] [Related]
17. Frequency-dependent shear properties of annulus fibrosus and nucleus pulposus by magnetic resonance elastography. Beauchemin PF; Bayly PV; Garbow JR; Schmidt JLS; Okamoto RJ; Chériet F; Périé D NMR Biomed; 2018 Oct; 31(10):e3918. PubMed ID: 29727498 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous magnetic resonance and optical elastography acquisitions: Comparison of displacement images and shear modulus estimations using a single vibration source. Brinker ST; Kearney SP; Royston TJ; Klatt D J Mech Behav Biomed Mater; 2018 Aug; 84():135-144. PubMed ID: 29775815 [TBL] [Abstract][Full Text] [Related]
19. Application of DENSE-MR-elastography to the human heart. Robert B; Sinkus R; Gennisson JL; Fink M Magn Reson Med; 2009 Nov; 62(5):1155-63. PubMed ID: 19780150 [TBL] [Abstract][Full Text] [Related]
20. Multiple motion encoding in phase-contrast MRI: A general theory and application to elastography imaging. Herthum H; Carrillo H; Osses A; Uribe S; Sack I; Bertoglio C Med Image Anal; 2022 May; 78():102416. PubMed ID: 35334444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]