These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35082346)

  • 21. MC
    Lee J; Kim B; Park H
    Magn Reson Med; 2021 Aug; 86(2):1077-1092. PubMed ID: 33720462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anatomical and diffusion MRI brain atlases of the fetal rhesus macaque brain at 85, 110 and 135 days gestation.
    Liu Z; Wang X; Newman N; Grant KA; Studholme C; Kroenke CD
    Neuroimage; 2020 Feb; 206():116310. PubMed ID: 31669303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model.
    Toğaçar M; Ergen B; Cömert Z
    Med Hypotheses; 2020 Jan; 134():109531. PubMed ID: 31877442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks.
    Lucena O; Souza R; Rittner L; Frayne R; Lotufo R
    Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accurate and robust segmentation of neuroanatomy in T1-weighted MRI by combining spatial priors with deep convolutional neural networks.
    Novosad P; Fonov V; Collins DL;
    Hum Brain Mapp; 2020 Feb; 41(2):309-327. PubMed ID: 31633863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bayesian convolutional neural network based MRI brain extraction on nonhuman primates.
    Zhao G; Liu F; Oler JA; Meyerand ME; Kalin NH; Birn RM
    Neuroimage; 2018 Jul; 175():32-44. PubMed ID: 29604454
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images.
    Duong STM; Phung SL; Bouzerdoum A; Schira MM
    Magn Reson Imaging; 2020 Sep; 71():1-10. PubMed ID: 32407764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring linearity of deep neural network trained QSM: QSMnet
    Jung W; Yoon J; Ji S; Choi JY; Kim JM; Nam Y; Kim EY; Lee J
    Neuroimage; 2020 May; 211():116619. PubMed ID: 32044437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fidelity imposed network edit (FINE) for solving ill-posed image reconstruction.
    Zhang J; Liu Z; Zhang S; Zhang H; Spincemaille P; Nguyen TD; Sabuncu MR; Wang Y
    Neuroimage; 2020 May; 211():116579. PubMed ID: 31981779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks.
    Khalili N; Turk E; Benders MJNL; Moeskops P; Claessens NHP; de Heus R; Franx A; Wagenaar N; Breur JMPJ; Viergever MA; Išgum I
    Neuroimage Clin; 2019; 24():102061. PubMed ID: 31835284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. U-net model for brain extraction: Trained on humans for transfer to non-human primates.
    Wang X; Li XH; Cho JW; Russ BE; Rajamani N; Omelchenko A; Ai L; Korchmaros A; Sawiak S; Benn RA; Garcia-Saldivar P; Wang Z; Kalin NH; Schroeder CE; Craddock RC; Fox AS; Evans AC; Messinger A; Milham MP; Xu T
    Neuroimage; 2021 Jul; 235():118001. PubMed ID: 33789137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From a deep learning model back to the brain-Identifying regional predictors and their relation to aging.
    Levakov G; Rosenthal G; Shelef I; Raviv TR; Avidan G
    Hum Brain Mapp; 2020 Aug; 41(12):3235-3252. PubMed ID: 32320123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal.
    Xie HN; Wang N; He M; Zhang LH; Cai HM; Xian JB; Lin MF; Zheng J; Yang YZ
    Ultrasound Obstet Gynecol; 2020 Oct; 56(4):579-587. PubMed ID: 31909548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank.
    Alfaro-Almagro F; Jenkinson M; Bangerter NK; Andersson JLR; Griffanti L; Douaud G; Sotiropoulos SN; Jbabdi S; Hernandez-Fernandez M; Vallee E; Vidaurre D; Webster M; McCarthy P; Rorden C; Daducci A; Alexander DC; Zhang H; Dragonu I; Matthews PM; Miller KL; Smith SM
    Neuroimage; 2018 Feb; 166():400-424. PubMed ID: 29079522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.
    Feng W; Halm-Lutterodt NV; Tang H; Mecum A; Mesregah MK; Ma Y; Li H; Zhang F; Wu Z; Yao E; Guo X
    Int J Neural Syst; 2020 Jun; 30(6):2050032. PubMed ID: 32498641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Robust and Accurate Deep-learning-based Method for the Segmentation of Subcortical Brain: Cross-dataset Evaluation of Generalization Performance.
    Furuhashi N; Okuhata S; Kobayashi T
    Magn Reson Med Sci; 2021 Jun; 20(2):166-174. PubMed ID: 32389928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning-based filter using convolutional neural network.
    Kromrey ML; Tamada D; Johno H; Funayama S; Nagata N; Ichikawa S; Kühn JP; Onishi H; Motosugi U
    Eur Radiol; 2020 Nov; 30(11):5923-5932. PubMed ID: 32556463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accurate brain-age models for routine clinical MRI examinations.
    Wood DA; Kafiabadi S; Busaidi AA; Guilhem E; Montvila A; Lynch J; Townend M; Agarwal S; Mazumder A; Barker GJ; Ourselin S; Cole JH; Booth TC
    Neuroimage; 2022 Apr; 249():118871. PubMed ID: 34995797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transfer learning improves resting-state functional connectivity pattern analysis using convolutional neural networks.
    Vakli P; Deák-Meszlényi RJ; Hermann P; Vidnyánszky Z
    Gigascience; 2018 Dec; 7(12):. PubMed ID: 30395218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.