BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 35082448)

  • 1. Sensory representation and detection mechanisms of gut osmolality change.
    Ichiki T; Wang T; Kennedy A; Pool AH; Ebisu H; Anderson DJ; Oka Y
    Nature; 2022 Feb; 602(7897):468-474. PubMed ID: 35082448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A gut-to-brain signal of fluid osmolarity controls thirst satiation.
    Zimmerman CA; Huey EL; Ahn JS; Beutler LR; Tan CL; Kosar S; Bai L; Chen Y; Corpuz TV; Madisen L; Zeng H; Knight ZA
    Nature; 2019 Apr; 568(7750):98-102. PubMed ID: 30918408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporally and Spatially Distinct Thirst Satiation Signals.
    Augustine V; Ebisu H; Zhao Y; Lee S; Ho B; Mizuno GO; Tian L; Oka Y
    Neuron; 2019 Jul; 103(2):242-249.e4. PubMed ID: 31153646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism.
    Borgmann D; Ciglieri E; Biglari N; Brandt C; Cremer AL; Backes H; Tittgemeyer M; Wunderlich FT; Brüning JC; Fenselau H
    Cell Metab; 2021 Jul; 33(7):1466-1482.e7. PubMed ID: 34043943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat.
    Zhu JX; Zhu XY; Owyang C; Li Y
    J Physiol; 2001 Feb; 530(Pt 3):431-42. PubMed ID: 11158274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural basis for regulation of vasopressin secretion by anticipated disturbances in osmolality.
    Kim A; Madara JC; Wu C; Andermann ML; Lowell BB
    Elife; 2021 Sep; 10():. PubMed ID: 34585668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Identification of Vagal Sensory Neurons That Control Feeding.
    Bai L; Mesgarzadeh S; Ramesh KS; Huey EL; Liu Y; Gray LA; Aitken TJ; Chen Y; Beutler LR; Ahn JS; Madisen L; Zeng H; Krasnow MA; Knight ZA
    Cell; 2019 Nov; 179(5):1129-1143.e23. PubMed ID: 31730854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thirst responses following high intensity intermittent exercise when access to ad libitum water intake was permitted, not permitted or delayed.
    Mears SA; Watson P; Shirreffs SM
    Physiol Behav; 2016 Apr; 157():47-54. PubMed ID: 26805724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced intestinal brain-derived neurotrophic factor increases vagal sensory innervation of the intestine and enhances satiation.
    Biddinger JE; Fox EA
    J Neurosci; 2014 Jul; 34(31):10379-93. PubMed ID: 25080597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Neurocircuitry of fluid satiation.
    Ryan PJ
    Physiol Rep; 2018 Jun; 6(12):e13744. PubMed ID: 29932494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration.
    Johnson AK; Thunhorst RL
    Front Neuroendocrinol; 1997 Jul; 18(3):292-353. PubMed ID: 9237080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory Neurons that Detect Stretch and Nutrients in the Digestive System.
    Williams EK; Chang RB; Strochlic DE; Umans BD; Lowell BB; Liberles SD
    Cell; 2016 Jun; 166(1):209-21. PubMed ID: 27238020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vagal and hormonal gut-brain communication: from satiation to satisfaction.
    Berthoud HR
    Neurogastroenterol Motil; 2008 May; 20 Suppl 1(0 1):64-72. PubMed ID: 18402643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of thirst and salt appetite in rats: early inhibition of water and NaCl ingestion.
    Stricker EM; Hoffmann ML
    Appetite; 2006 Mar; 46(2):234-7. PubMed ID: 16499997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmoreceptors, osmoreception, and osmoregulation.
    Bourque CW; Oliet SH; Richard D
    Front Neuroendocrinol; 1994 Sep; 15(3):231-74. PubMed ID: 7859914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural Control and Modulation of Thirst, Sodium Appetite, and Hunger.
    Augustine V; Lee S; Oka Y
    Cell; 2020 Jan; 180(1):25-32. PubMed ID: 31923398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The liver-brain-gut neural arc maintains the T
    Teratani T; Mikami Y; Nakamoto N; Suzuki T; Harada Y; Okabayashi K; Hagihara Y; Taniki N; Kohno K; Shibata S; Miyamoto K; Ishigame H; Chu PS; Sujino T; Suda W; Hattori M; Matsui M; Okada T; Okano H; Inoue M; Yada T; Kitagawa Y; Yoshimura A; Tanida M; Tsuda M; Iwasaki Y; Kanai T
    Nature; 2020 Sep; 585(7826):591-596. PubMed ID: 32526765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leptin Sensitizes NTS Neurons to Vagal Input by Increasing Postsynaptic NMDA Receptor Currents.
    Neyens D; Zhao H; Huston NJ; Wayman GA; Ritter RC; Appleyard SM
    J Neurosci; 2020 Sep; 40(37):7054-7064. PubMed ID: 32817248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Satiation of thirst and termination of drinking: roles of plasma osmolality and absorption.
    Hatton GI; Bennett CT
    Physiol Behav; 1970 Apr; 5(4):479-87. PubMed ID: 5535500
    [No Abstract]   [Full Text] [Related]  

  • 20. Osmotic and non-osmotic regulation of thirst and vasopressin secretion in patients with compulsive water drinking.
    Thompson CJ; Edwards CR; Baylis PH
    Clin Endocrinol (Oxf); 1991 Sep; 35(3):221-8. PubMed ID: 1742879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.