These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3508277)

  • 1. Melanophore differentiation in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T; Ide H
    Pigment Cell Res; 1987; 1(3):197-201. PubMed ID: 3508277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further studies on the melanophores of periodic albino mutant of Xenopus laevis.
    Fukuzawa T; Ide H
    J Embryol Exp Morphol; 1986 Feb; 91():65-78. PubMed ID: 3711792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A ventrally localized inhibitor of melanization in Xenopus laevis skin.
    Fukuzawa T; Ide H
    Dev Biol; 1988 Sep; 129(1):25-36. PubMed ID: 3410161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of melanoblast differentiation in amphibia by alpha-melanocyte stimulating hormone, a serum melanization factor, and a melanization inhibiting factor.
    Fukuzawa T; Bagnara JT
    Pigment Cell Res; 1989; 2(3):171-81. PubMed ID: 2549532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of pigment cell development in the periodic albino mutant of Xenopus.
    MacMillan GJ
    J Embryol Exp Morphol; 1979 Aug; 52():165-70. PubMed ID: 521748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferritin H subunit gene is specifically expressed in melanophore precursor-derived white pigment cells in which reflecting platelets are formed from stage II melanosomes in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Cell Tissue Res; 2015 Sep; 361(3):733-44. PubMed ID: 25715760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on cellular adhesion of Xenopus laevis melanophores: modulation of cell-cell and cell-substratum adhesion in vitro by endogenous Xenopus galactoside-binding lectin.
    Milos NC; Wilson HC; Ma YL; Mohanraj TM; Frunchak YN
    Pigment Cell Res; 1987; 1(3):188-96. PubMed ID: 3508276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual leucophore-like cells specifically appear in the lineage of melanophores in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Pigment Cell Res; 2004 Jun; 17(3):252-61. PubMed ID: 15140070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual light-reflecting pigment cells appear in the Xenopus neural tube culture system in the presence of guanosine.
    Fukuzawa T; Kikuchi Y
    Tissue Cell; 2018 Oct; 54():55-58. PubMed ID: 30309510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pigment cell pattern formation in amphibian embryos: a reexamination of the dopa technique.
    Tucker RP; Erickson CA
    J Exp Zool; 1986 Nov; 240(2):173-82. PubMed ID: 2432154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The control of mealanoblast differentiation in the periodic albino mutant of Xenopus.
    MacMillan GJ
    Experientia; 1980 Sep; 36(9):1120-1. PubMed ID: 7418857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melanophore lineage and clonal organization of the epidermis in Xenopus embryos as revealed by expression of a biogenic marker, GFP.
    Fukuzawa T
    Pigment Cell Res; 2000 Jun; 13(3):151-7. PubMed ID: 10885673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Cell Tissue Res; 2010 Oct; 342(1):53-66. PubMed ID: 20859642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melanophore sublineage-specific requirement for zebrafish touchtone during neural crest development.
    Arduini BL; Henion PD
    Mech Dev; 2004 Nov; 121(11):1353-64. PubMed ID: 15454265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of neural crest cells of Xenopus laevis in clonal culture.
    Akira E; Ide H
    Pigment Cell Res; 1987; 1(1):28-36. PubMed ID: 3507660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell surface carbohydrate involvement in controlling the adhesion and morphology of neural crest cells and melanophores of Xenopus laevis.
    Milos NC; Wilson HC
    J Exp Zool; 1986 May; 238(2):211-24. PubMed ID: 3086486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pigment pattern evolution by differential deployment of neural crest and post-embryonic melanophore lineages in Danio fishes.
    Quigley IK; Turner JM; Nuckels RJ; Manuel JL; Budi EH; MacDonald EL; Parichy DM
    Development; 2004 Dec; 131(24):6053-69. PubMed ID: 15537688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and experimental studies on a new pigment mutant in Xenopus laevis.
    Droin A
    J Exp Zool; 1992 Nov; 264(2):196-205. PubMed ID: 1431781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melanoblast-tissue interactions and the development of pigment pattern in Xenopus larvae.
    Macmillan GJ
    J Embryol Exp Morphol; 1976 Jun; 35(3):463-84. PubMed ID: 947992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of melanophore development in zebrafish embryos.
    Kelsh RN; Schmid B; Eisen JS
    Dev Biol; 2000 Sep; 225(2):277-93. PubMed ID: 10985850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.