These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 35083857)
1. Scalable Synthesis of Nano-Sized Bi for Separator Modifying in 5V-Class Lithium Metal Batteries and Potassium Ion Batteries Anodes. Jiang H; Lin X; Wei C; Feng J; Tian X Small; 2022 Jan; 18(4):e2104264. PubMed ID: 35083857 [TBL] [Abstract][Full Text] [Related]
2. High-Safety and Dendrite-Free Lithium Metal Batteries Enabled by Building a Stable Interface in a Nonflammable Medium-Concentration Phosphate Electrolyte. Zhang K; An Y; Wei C; Qian Y; Zhang Y; Feng J ACS Appl Mater Interfaces; 2021 Nov; 13(43):50869-50877. PubMed ID: 34664939 [TBL] [Abstract][Full Text] [Related]
3. Clay-Originated Two-Dimensional Holey Silica Separator for Dendrite-Free Lithium Metal Anode. Guo C; Luo ZH; Zhou MX; Wu X; Shi Y; An Q; Shao JJ; Zhou G Small; 2023 Sep; 19(36):e2301428. PubMed ID: 37127872 [TBL] [Abstract][Full Text] [Related]
4. Bendable Network Built with Ultralong Silica Nanowires as a Stable Separator for High-Safety and High-Power Lithium-Metal Batteries. Du QC; Yang MT; Yang JK; Zhang P; Qi JQ; Bai L; Li Z; Chen JY; Liu RQ; Feng XM; Huang ZD; Masese T; Ma YW; Huang W ACS Appl Mater Interfaces; 2019 Sep; 11(38):34895-34903. PubMed ID: 31479240 [TBL] [Abstract][Full Text] [Related]
5. Biofilm Nanofiber-Coated Separators for Dendrite-Free Lithium Metal Anode and Ultrahigh-Rate Lithium Batteries. Nie L; Li Y; Chen S; Li K; Huang Y; Zhu Y; Sun Z; Zhang J; He Y; Cui M; Wei S; Qiu F; Zhong C; Liu W ACS Appl Mater Interfaces; 2019 Sep; 11(35):32373-32380. PubMed ID: 31407877 [TBL] [Abstract][Full Text] [Related]
6. A Nano-shield Design for Separators to Resist Dendrite Formation in Lithium-Metal Batteries. Liang J; Chen Q; Liao X; Yao P; Zhu B; Lv G; Wang X; Chen X; Zhu J Angew Chem Int Ed Engl; 2020 Apr; 59(16):6561-6566. PubMed ID: 31975550 [TBL] [Abstract][Full Text] [Related]
7. In Situ Chemical Lithiation Transforms Diamond-Like Carbon into an Ultrastrong Ion Conductor for Dendrite-Free Lithium-Metal Anodes. Li Z; Peng M; Zhou X; Shin K; Tunmee S; Zhang X; Xie C; Saitoh H; Zheng Y; Zhou Z; Tang Y Adv Mater; 2021 Sep; 33(37):e2100793. PubMed ID: 34331320 [TBL] [Abstract][Full Text] [Related]
8. An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell. Chang Z; Yang H; Pan A; He P; Zhou H Nat Commun; 2022 Nov; 13(1):6788. PubMed ID: 36357423 [TBL] [Abstract][Full Text] [Related]
9. Long-Term Stable Lithium Metal Anode in Highly Concentrated Sulfolane-Based Electrolytes with Ultrafine Porous Polyimide Separator. Maeyoshi Y; Ding D; Kubota M; Ueda H; Abe K; Kanamura K; Abe H ACS Appl Mater Interfaces; 2019 Jul; 11(29):25833-25843. PubMed ID: 31245988 [TBL] [Abstract][Full Text] [Related]
10. A Polar and Ordered-Channel Composite Separator Enables Antidendrite and Long-Cycle Lithium Metal Batteries. Wu Z; Cai Z; Fang B; Liu M; Wu H; Liu A; Ye F ACS Appl Mater Interfaces; 2021 Jun; 13(22):25890-25897. PubMed ID: 34043330 [TBL] [Abstract][Full Text] [Related]
11. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid. Yang C; Fu K; Zhang Y; Hitz E; Hu L Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28741318 [TBL] [Abstract][Full Text] [Related]
12. Influence of the PET-PTFE Separator Pore Structure on the Performance of Lithium Metal Batteries. Li J; Gao Y; Duan M; Peng Y; Zheng Y; Chai J; Liu Z ACS Appl Mater Interfaces; 2024 Jul; 16(27):34902-34912. PubMed ID: 38904546 [TBL] [Abstract][Full Text] [Related]
13. Surface-Functionalized Separator for Stable and Reliable Lithium Metal Batteries: A Review. Kim PJ Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578592 [TBL] [Abstract][Full Text] [Related]
14. Improving Cyclability of Lithium Metal Anode via Constructing Atomic Interlamellar Ion Channel for Lithium Sulfur Battery. Yang M; Jue N; Chen Y; Wang Y Nanoscale Res Lett; 2021 Mar; 16(1):52. PubMed ID: 33759059 [TBL] [Abstract][Full Text] [Related]
15. Nano-Interfacial Supramolecular Adhesion of Metal-Organic Framework-Based Separator Enables High-Safety and Wide-Temperature-Range Lithium Batteries. Gao Y; Liu QS; Long MC; Zhu GR; Wu G; Wang XL; Wang YZ Small; 2024 Aug; 20(33):e2400980. PubMed ID: 38545991 [TBL] [Abstract][Full Text] [Related]
16. Nanocellulose Modified Polyethylene Separators for Lithium Metal Batteries. Pan R; Xu X; Sun R; Wang Z; Lindh J; Edström K; Strømme M; Nyholm L Small; 2018 May; 14(21):e1704371. PubMed ID: 29675952 [TBL] [Abstract][Full Text] [Related]
17. Stable anode/separator interface enabled by graft modification of polypropylene separator via electron beam irradiation technique toward high-performance sodium metal batteries. Zhao Y; Zhan J; Liu X; Wang H; Li Z; Xu G; Zhou W; Wu C; Wang G J Colloid Interface Sci; 2024 Sep; 670():246-257. PubMed ID: 38761577 [TBL] [Abstract][Full Text] [Related]
18. Improving the cycling stability of lithium metal anodes through separator modification with nano-molybdenum powder. Li L; Wu Y; Hu C; Li J; Guo X RSC Adv; 2024 Aug; 14(37):27066-27073. PubMed ID: 39193297 [TBL] [Abstract][Full Text] [Related]
19. A crystalline carbon nitride-based separator for high-performance lithium metal batteries. Di S; Li H; Zhai B; Zhi X; Niu P; Wang S; Li L Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2302375120. PubMed ID: 37549254 [TBL] [Abstract][Full Text] [Related]
20. Application of PVDF Organic Particles Coating on Polyethylene Separator for Lithium Ion Batteries. Wang Y; Yin C; Song Z; Wang Q; Lan Y; Luo J; Bo L; Yue Z; Sun F; Li X Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31557824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]