These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1478 related articles for article (PubMed ID: 35084684)

  • 21. Remediation of lead from lead electroplating industrial effluent using sago waste.
    Jeyanthi GP; Shanthi G
    J Environ Sci Eng; 2007 Jan; 49(1):13-6. PubMed ID: 18472553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene-based nanomaterials in the electroplating industry: A suitable choice for heavy metal removal from wastewater.
    De Beni E; Giurlani W; Fabbri L; Emanuele R; Santini S; Sarti C; Martellini T; Piciollo E; Cincinelli A; Innocenti M
    Chemosphere; 2022 Apr; 292():133448. PubMed ID: 34973258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique A case study.
    Merzouk B; Gourich B; Sekki A; Madani K; Chibane M
    J Hazard Mater; 2009 May; 164(1):215-22. PubMed ID: 18799259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosorption of metal ions from aqueous solution and electroplating industry wastewater by Aspergillus japonicus: phytotoxicity studies.
    Binupriya AR; Sathishkumar M; Swaminathan K; Jeong ES; Yun SE; Pattabi S
    Bull Environ Contam Toxicol; 2006 Aug; 77(2):219-27. PubMed ID: 16977523
    [No Abstract]   [Full Text] [Related]  

  • 25. The application of electrochemical processes in oily wastewater treatment: a review.
    Druskovic M; Vouk D; Posavcic H; Halkijevic I; Nad K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(13):1373-1386. PubMed ID: 34783645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oil palm biomass as an adsorbent for heavy metals.
    Vakili M; Rafatullah M; Ibrahim MH; Abdullah AZ; Salamatinia B; Gholami Z
    Rev Environ Contam Toxicol; 2014; 232():61-88. PubMed ID: 24984835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of chromium from electroplating industry effluents by ion exchange resins.
    Cavaco SA; Fernandes S; Quina MM; Ferreira LM
    J Hazard Mater; 2007 Jun; 144(3):634-8. PubMed ID: 17336455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review.
    Hermosilla D; Merayo N; Gascó A; Blanco Á
    Environ Sci Pollut Res Int; 2015 Jan; 22(1):168-91. PubMed ID: 25185495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biological removal of cyanide compounds from electroplating wastewater (EPWW) by sequencing batch reactor (SBR) system.
    Sirianuntapiboon S; Chairattanawan K; Rarunroeng M
    J Hazard Mater; 2008 Jun; 154(1-3):526-34. PubMed ID: 18054163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial biomass: an economical alternative for removal of heavy metals from waste water.
    Gupta R; Mohapatra H
    Indian J Exp Biol; 2003 Sep; 41(9):945-66. PubMed ID: 15242288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent progress in removal of heavy metals from wastewater: A comprehensive review.
    Fei Y; Hu YH
    Chemosphere; 2023 Sep; 335():139077. PubMed ID: 37263507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategies for decolorization and detoxification of pulp and paper mill effluent.
    Garg SK; Tripathi M
    Rev Environ Contam Toxicol; 2011; 212():113-36. PubMed ID: 21432056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification of heavy metal loaded wastewater from electroplating industry under synthesis of delafossite (ABO2) by "Lt-delafossite process".
    John M; Heuss-Aßbichler S; Ullrich A; Rettenwander D
    Water Res; 2016 Sep; 100():98-104. PubMed ID: 27179596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers.
    Liu T; Yang X; Wang ZL; Yan X
    Water Res; 2013 Nov; 47(17):6691-700. PubMed ID: 24075723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sustainable approach on removal of toxic metals from electroplating industrial wastewater using dissolved air flotation.
    Pooja G; Kumar PS; Prasannamedha G; Varjani S; Vo DN
    J Environ Manage; 2021 Oct; 295():113147. PubMed ID: 34214795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal-organic frameworks based adsorbents: A review from removal perspective of various environmental contaminants from wastewater.
    Rasheed T; Hassan AA; Bilal M; Hussain T; Rizwan K
    Chemosphere; 2020 Nov; 259():127369. PubMed ID: 32593814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion exchange extraction of heavy metals from wastewater sludges.
    Al-Enezi G; Hamoda MF; Fawzi N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(2):455-64. PubMed ID: 15027828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sustainable treatment of paint industry wastewater: Current techniques and challenges.
    Nair K S; Manu B; Azhoni A
    J Environ Manage; 2021 Oct; 296():113105. PubMed ID: 34216906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The relevance of physicochemical and biological parameters for setting emission limit values for plants treating complex industrial wastewaters.
    Huybrechts D; Weltens R; Jacobs G; Borburgh A; Smets T; Hoebeke L; Polders C
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):2805-16. PubMed ID: 24142491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach.
    Mandal RR; Bashir Z; Mandal JR; Raj D
    Environ Monit Assess; 2024 May; 196(6):502. PubMed ID: 38700594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 74.