These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35084821)

  • 1. Discovery of Thermostable, Fluorescently Responsive Glucose Biosensors by Structure-Assisted Function Extrapolation.
    Allert MJ; Hellinga HW
    Biochemistry; 2022 Feb; 61(4):276-293. PubMed ID: 35084821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a reagentless glucose biosensor using molecular exciton luminescence.
    Der BS; Dattelbaum JD
    Anal Biochem; 2008 Apr; 375(1):132-40. PubMed ID: 18082614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a fluorescent biosensor family.
    de Lorimier RM; Smith JJ; Dwyer MA; Looger LL; Sali KM; Paavola CD; Rizk SS; Sadigov S; Conrad DW; Loew L; Hellinga HW
    Protein Sci; 2002 Nov; 11(11):2655-75. PubMed ID: 12381848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of ligand specificity of periplasmic binding protein for glucose sensing.
    Sakaguchi-Mikami A; Taneoka A; Yamoto R; Ferri S; Sode K
    Biotechnol Lett; 2008 Aug; 30(8):1453-60. PubMed ID: 18414800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genetically encoded, high-signal-to-noise maltose sensor.
    Marvin JS; Schreiter ER; Echevarría IM; Looger LL
    Proteins; 2011 Nov; 79(11):3025-36. PubMed ID: 21989929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of a thermophilic glucose binding protein reveals adaptations that interconvert mono and di-saccharide binding sites.
    Cuneo MJ; Changela A; Warren JJ; Beese LS; Hellinga HW
    J Mol Biol; 2006 Sep; 362(2):259-70. PubMed ID: 16904687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor.
    Okada S; Ota K; Ito T
    Protein Sci; 2009 Dec; 18(12):2518-27. PubMed ID: 19827096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering and rapid selection of a low-affinity glucose/galactose-binding protein for a glucose biosensor.
    Amiss TJ; Sherman DB; Nycz CM; Andaluz SA; Pitner JB
    Protein Sci; 2007 Nov; 16(11):2350-9. PubMed ID: 17905834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maltose-binding protein: a versatile platform for prototyping biosensing.
    Medintz IL; Deschamps JR
    Curr Opin Biotechnol; 2006 Feb; 17(1):17-27. PubMed ID: 16413768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based design of robust glucose biosensors using a Thermotoga maritima periplasmic glucose-binding protein.
    Tian Y; Cuneo MJ; Changela A; Höcker B; Beese LS; Hellinga HW
    Protein Sci; 2007 Oct; 16(10):2240-50. PubMed ID: 17766373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically encoded FRET-based nanosensor for in vivo measurement of leucine.
    Mohsin M; Abdin MZ; Nischal L; Kardam H; Ahmad A
    Biosens Bioelectron; 2013 Dec; 50():72-7. PubMed ID: 23835220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering a switch-based biosensor for arginine using a Thermotoga maritima periplasmic binding protein.
    Donaldson T; Iozzino L; Deacon LJ; Billones H; Ausili A; D'Auria S; Dattelbaum JD
    Anal Biochem; 2017 May; 525():60-66. PubMed ID: 28259516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knowledge-based design of reagentless fluorescent biosensors from a designed ankyrin repeat protein.
    Brient-Litzler E; Plückthun A; Bedouelle H
    Protein Eng Des Sel; 2010 Apr; 23(4):229-41. PubMed ID: 19945965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: a glucose biosensor application.
    Andreescu S; Luck LA
    Anal Biochem; 2008 Apr; 375(2):282-90. PubMed ID: 18211816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General strategy for biosensor design and construction employing multifunctional surface-tethered components.
    Medintz IL; Anderson GP; Lassman ME; Goldman ER; Bettencourt LA; Mauro JM
    Anal Chem; 2004 Oct; 76(19):5620-9. PubMed ID: 15456279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A piezoelectric quartz crystal biosensor: the use of two single cysteine mutants of the periplasmic Escherichia coli glucose/galactose receptor as target proteins for the detection of glucose.
    Carmon KS; Baltus RE; Luck LA
    Biochemistry; 2004 Nov; 43(44):14249-56. PubMed ID: 15518575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periplasmic binding protein-based detection of maltose using liposomes: a new class of biorecognition elements in competitive assays.
    Edwards KA; Baeumner AJ
    Anal Chem; 2013 Mar; 85(5):2770-8. PubMed ID: 23411612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational stability and domain coupling in D-glucose/D-galactose-binding protein from Escherichia coli.
    Piszczek G; D'Auria S; Staiano M; Rossi M; Ginsburg A
    Biochem J; 2004 Jul; 381(Pt 1):97-103. PubMed ID: 15032747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ratiometric analyses at critical temperatures can magnify the signal intensity of FRET-based sugar sensors with periplasmic binding proteins.
    Gam J; Ha JS; Kim H; Lee DH; Lee J; Lee SG
    Biosens Bioelectron; 2015 Oct; 72():37-43. PubMed ID: 25957075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence detection of GDP in real time with the reagentless biosensor rhodamine-ParM.
    Kunzelmann S; Webb MR
    Biochem J; 2011 Nov; 440(1):43-9. PubMed ID: 21812760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.