These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 350850)
1. Dependence of Escherichia coli hyperbaric oxygen toxicity on the lipid acyl chain composition. Harley JB; Santangelo GM; Rasmussen H; Goldfine H J Bacteriol; 1978 Jun; 134(3):808-20. PubMed ID: 350850 [TBL] [Abstract][Full Text] [Related]
2. Hyperbaric oxygen toxicity and ribosome destruction in Escherichia coli K12. Harley JB; Flaks JG; Goldfine H; Bayer ME; Rasmussen H Can J Microbiol; 1981 Jan; 27(1):44-51. PubMed ID: 6163514 [TBL] [Abstract][Full Text] [Related]
3. Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Avery SV; Howlett NG; Radice S Appl Environ Microbiol; 1996 Nov; 62(11):3960-6. PubMed ID: 8899983 [TBL] [Abstract][Full Text] [Related]
4. Toxicity of activated oxygen: lack of dependence on membrane unsaturated fatty acid composition. Ohlrogge JB; Kernan TP Biochem Biophys Res Commun; 1983 May; 113(1):301-8. PubMed ID: 6344868 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of ethanol-induced changes in lipid composition of Escherichia coli: inhibition of saturated fatty acid synthesis in vivo. Buttke TM; Ingram LO Biochemistry; 1978 Feb; 17(4):637-44. PubMed ID: 341971 [TBL] [Abstract][Full Text] [Related]
6. The effect of temperature and membrane lipid composition on the rate of beta-oxidation by Escherichia coli. O'Brien WJ; Frerman FE Biochim Biophys Acta; 1980 Jan; 617(1):20-7. PubMed ID: 6986174 [TBL] [Abstract][Full Text] [Related]
7. Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. Voelker TA; Davies HM J Bacteriol; 1994 Dec; 176(23):7320-7. PubMed ID: 7961504 [TBL] [Abstract][Full Text] [Related]
8. Quantitative effects of unsaturated fatty acids in microbial mutants. IV. Lipid composition of Saccharomyces cerevisiae when growth is limited by unsaturated fatty acid supply. Holub BJ; Lands WE Can J Biochem; 1975 Dec; 53(12):1262-77. PubMed ID: 766924 [TBL] [Abstract][Full Text] [Related]
9. Influence of unsaturated fatty acids, membrane fluidity and oxygenation on the survival of an E. coli fatty acid auxotroph following gamma-irradiation. Yatvin MB; Gipp JJ; Dennis WH Int J Radiat Biol Relat Stud Phys Chem Med; 1979 Jun; 35(6):539-48. PubMed ID: 383635 [TBL] [Abstract][Full Text] [Related]
10. Lipid and temperature dependence of the kinetic and thermodynamic parameters for active amino acid transport in Escherichia coli K1060. Eze MO; McElhaney RN Biochim Biophys Acta; 1987 Feb; 897(1):159-68. PubMed ID: 3542046 [TBL] [Abstract][Full Text] [Related]
11. Effect of the osmotic pressure of the growth medium on fabB mutants of Escherichia coli. Broekman JH; Steenbakkers JF J Bacteriol; 1974 Mar; 117(3):971-7. PubMed ID: 4591962 [TBL] [Abstract][Full Text] [Related]
12. Influence of membrane-lipid composition on translocation of nascent proteins in heated Escherichia coli. Yatvin MB Biochim Biophys Acta; 1987 Jul; 901(1):147-56. PubMed ID: 3297149 [TBL] [Abstract][Full Text] [Related]
13. Effect of membrane fatty acid changes on the radiation sensitivity of human lymphoid cells. George AM; Lunec J; Cramp WA Int J Radiat Biol Relat Stud Phys Chem Med; 1983 Apr; 43(4):363-78. PubMed ID: 6601634 [TBL] [Abstract][Full Text] [Related]
14. Regulation of membrane lipid synthesis in Escherichia coli. Accumulation of free fatty acids of abnormal length during inhibition of phospholipid synthesis. Cronan JE; Weisberg LJ; Allen RG J Biol Chem; 1975 Aug; 250(15):5835-40. PubMed ID: 1097444 [TBL] [Abstract][Full Text] [Related]
15. Unsaturated fatty acid requirement in Escherichia coli: mechanism of palmitate-induced inhibition of growth of strain WN1. Ingram LO; Eaton LC; Erdos GW; Tedder TF; Vreeland NL J Membr Biol; 1982; 65(1-2):31-40. PubMed ID: 7035675 [TBL] [Abstract][Full Text] [Related]
16. The cryoprotectant trehalose destabilises the bilayer organisation of Escherichia coli-derived membrane systems at elevated temperatures as determined by 2H and 31P-NMR. Fabrie CH; Smeets JM; de Kruijff B; de Gier J Chem Phys Lipids; 1994 Apr; 70(2):133-45. PubMed ID: 8033285 [TBL] [Abstract][Full Text] [Related]
17. Factors affecting the changes in amphotericin sensitivity of Candida albicans during growth. Gale EF; Johnson AM; Kerridge D; Koh TY J Gen Microbiol; 1975 Mar; 87(1):20-36. PubMed ID: 1094096 [TBL] [Abstract][Full Text] [Related]
18. Relationship of cellular fatty acid composition to survival of Lactobacillus bulgaricus in liquid nitrogen. Smittle RB; Gilliland SE; Speck ML; Walter WM Appl Microbiol; 1974 Apr; 27(4):738-43. PubMed ID: 4363555 [TBL] [Abstract][Full Text] [Related]
19. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. Marr AG; Ingraham JL J Bacteriol; 1962 Dec; 84(6):1260-7. PubMed ID: 16561982 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the interplay among the charge of porphyrinic photosensitizers, lipid oxidation and photoinactivation efficiency in Escherichia coli. Lopes D; Melo T; Santos N; Rosa L; Alves E; Clara Gomes M; Cunha Â; Neves MG; Faustino MA; Domingues MR; Almeida A J Photochem Photobiol B; 2014 Dec; 141():145-53. PubMed ID: 25463662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]