These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 35085087)
1. Hiding Assistive Robots During Training in Immersive VR Does Not Affect Users' Motivation, Presence, Embodiment, Performance, Nor Visual Attention. Wenk N; Jordi MV; Buetler KA; Marchal-Crespo L IEEE Trans Neural Syst Rehabil Eng; 2022; 30():390-399. PubMed ID: 35085087 [TBL] [Abstract][Full Text] [Related]
2. Effect of immersive visualization technologies on cognitive load, motivation, usability, and embodiment. Wenk N; Penalver-Andres J; Buetler KA; Nef T; Müri RM; Marchal-Crespo L Virtual Real; 2023; 27(1):307-331. PubMed ID: 36915633 [TBL] [Abstract][Full Text] [Related]
3. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support. Özen Ö; Buetler KA; Marchal-Crespo L J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897 [TBL] [Abstract][Full Text] [Related]
4. Virtual Reality Environments and Haptic Strategies to Enhance Implicit Learning and Motivation in Robot-Assisted Training. Bernardoni F; Ozen O; Buetler K; Marchal-Crespo L IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():760-765. PubMed ID: 31374722 [TBL] [Abstract][Full Text] [Related]
5. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke. Winter C; Kern F; Gall D; Latoschik ME; Pauli P; Käthner I J Neuroeng Rehabil; 2021 Apr; 18(1):68. PubMed ID: 33888148 [TBL] [Abstract][Full Text] [Related]
6. Virtual Reality as a Therapy Tool for Walking Activities in Pediatric Neurorehabilitation: Usability and User Experience Evaluation. Ammann-Reiffer C; Kläy A; Keller U JMIR Serious Games; 2022 Jul; 10(3):e38509. PubMed ID: 35834316 [TBL] [Abstract][Full Text] [Related]
7. Naturalistic visualization of reaching movements using head-mounted displays improves movement quality compared to conventional computer screens and proves high usability. Wenk N; Buetler KA; Penalver-Andres J; Müri RM; Marchal-Crespo L J Neuroeng Rehabil; 2022 Dec; 19(1):137. PubMed ID: 36494668 [TBL] [Abstract][Full Text] [Related]
8. Embodiment Is Related to Better Performance on a Brain-Computer Interface in Immersive Virtual Reality: A Pilot Study. Juliano JM; Spicer RP; Vourvopoulos A; Lefebvre S; Jann K; Ard T; Santarnecchi E; Krum DM; Liew SL Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098317 [TBL] [Abstract][Full Text] [Related]
9. TouchMark: Partial Tactile Feedback Design for Upper Limb Rehabilitation in Virtual Reality. Zhang J; Huang M; Chen Y; Liao KL; Shi J; Liang HN; Yang R IEEE Trans Vis Comput Graph; 2024 Nov; 30(11):7430-7440. PubMed ID: 39255139 [TBL] [Abstract][Full Text] [Related]
10. Music meets robotics: a prospective randomized study on motivation during robot aided therapy. Baur K; Speth F; Nagle A; Riener R; Klamroth-Marganska V J Neuroeng Rehabil; 2018 Aug; 15(1):79. PubMed ID: 30115082 [TBL] [Abstract][Full Text] [Related]
11. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement. Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862 [TBL] [Abstract][Full Text] [Related]
12. Brain-computer interfaces and virtual reality for neurorehabilitation. Leeb R; Pérez-Marcos D Handb Clin Neurol; 2020; 168():183-197. PubMed ID: 32164852 [TBL] [Abstract][Full Text] [Related]
13. Immersive Virtual Reality during Robot-Assisted Gait Training: Validation of a New Device in Stroke Rehabilitation. Morizio C; Compagnat M; Boujut A; Labbani-Igbida O; Billot M; Perrochon A Medicina (Kaunas); 2022 Dec; 58(12):. PubMed ID: 36557007 [TBL] [Abstract][Full Text] [Related]
14. Combined virtual reality and haptic robotics induce space and movement invariant sensorimotor adaptation. Wilf M; Cerra Cheraka M; Jeanneret M; Ott R; Perrin H; Crottaz-Herbette S; Serino A Neuropsychologia; 2021 Jan; 150():107692. PubMed ID: 33232695 [TBL] [Abstract][Full Text] [Related]
15. Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern. Marchal-Crespo L; Tsangaridis P; Obwegeser D; Maggioni S; Riener R Front Neurosci; 2019; 13():61. PubMed ID: 30837824 [TBL] [Abstract][Full Text] [Related]
16. Promoting Motor Variability During Robotic Assistance Enhances Motor Learning of Dynamic Tasks. Özen Ö; Buetler KA; Marchal-Crespo L Front Neurosci; 2020; 14():600059. PubMed ID: 33603642 [TBL] [Abstract][Full Text] [Related]
17. Control of aperture closure during reach-to-grasp movements in immersive haptic-free virtual reality. Mangalam M; Yarossi M; Furmanek MP; Tunik E Exp Brain Res; 2021 May; 239(5):1651-1665. PubMed ID: 33774688 [TBL] [Abstract][Full Text] [Related]
18. The Role of Coherent Robot Behavior and Embodiment in Emotion Perception and Recognition During Human-Robot Interaction: Experimental Study. Fiorini L; D'Onofrio G; Sorrentino A; Cornacchia Loizzo FG; Russo S; Ciccone F; Giuliani F; Sancarlo D; Cavallo F JMIR Hum Factors; 2024 Jan; 11():e45494. PubMed ID: 38277201 [TBL] [Abstract][Full Text] [Related]
19. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory. Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528 [TBL] [Abstract][Full Text] [Related]