BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35085123)

  • 21. Comparative study between mobile computed radiography and mobile flat-panel radiography for bedside chest radiography: impact of an antiscatter grid on the visibility of selected diagnostically relevant structures.
    Lehnert T; Naguib NN; Wutzler S; Bauer RW; Kerl JM; Burkhard T; Schulz B; Larson MC; Ackermann H; Vogl TJ; Balzer JO
    Invest Radiol; 2014 Jan; 49(1):1-6. PubMed ID: 24019019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated characterization of perceptual quality of clinical chest radiographs: validation and calibration to observer preference.
    Samei E; Lin Y; Choudhury KR; McAdams HP
    Med Phys; 2014 Nov; 41(11):111918. PubMed ID: 25370651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Digital slot-scan charge-coupled device radiography versus AMBER and Bucky screen-film radiography: comparison of image quality in a phantom study.
    Veldkamp WJ; Kroft LJ; Mertens BJ; Geleijns J
    Radiology; 2005 Jun; 235(3):857-66. PubMed ID: 15845787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Examination for Effectiveness of Scatter Correction in Portable Chest Radiography].
    Ichikawa H; Ono T; Sawane Y; Terabe M; Yamaguchi M; Shimada H
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2016; 72(12):1207-1215. PubMed ID: 28003607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship Between Tube Voltage and Physical Image Quality of Pulmonary Nodules on Chest Radiographs Obtained Using the Bone-Suppression Technique.
    Takagi S; Yaegashi T; Ishikawa M
    Acad Radiol; 2019 Jul; 26(7):e174-e179. PubMed ID: 30269955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of flexible noise control (FNC) image processing parameters on portable chest radiography.
    Kirby KM; Ren L; Daly TR; Tandon YK; Bartholmai BJ; Schueler BA; Long Z
    J Appl Clin Med Phys; 2022 Dec; 23(12):e13812. PubMed ID: 36321326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distributions of scatter-to-primary and signal-to-noise ratios per pixel in digital chest imaging.
    Ullman G; Sandborg M; Dance DR; Hunt R; Alm Carlsson G
    Radiat Prot Dosimetry; 2005; 114(1-3):355-8. PubMed ID: 15933136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bayesian image estimation of digital chest radiography: interdependence of noise, resolution, and scatter fraction.
    Baydush AH; Floyd CE
    Med Phys; 1995 Aug; 22(8):1255-61. PubMed ID: 7476711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combination system in advanced image processing for improving image contrast and a conventional row-ratio grid for an indirect flat-panel detector system: An experimental study.
    Tanaka N; Kuroyanagi H
    Phys Med; 2020 Jun; 74():40-46. PubMed ID: 32413514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal combination of anti-scatter grids and software correction for CBCT imaging.
    Stankovic U; Ploeger LS; van Herk M; Sonke JJ
    Med Phys; 2017 Sep; 44(9):4437-4451. PubMed ID: 28556204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Potential Role of Grid-Like Software in Bedside Chest Radiography in Improving Image Quality and Dose Reduction: An Observer Preference Study.
    Ahn SY; Chae KJ; Goo JM
    Korean J Radiol; 2018; 19(3):526-533. PubMed ID: 29713231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Usefulness of Combining Post-processing Scatter Correction and an Anti-scatter Grid in Chest Standing Radiography].
    Fujikawa K; Osaki T; Nakagawa H; Kikuchi K; Kiriki M; Wada Y; Miki R; Kotoura N
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2021; 77(6):555-563. PubMed ID: 34148897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT.
    Reitz I; Hesse BM; Nill S; Tücking T; Oelfke U
    Z Med Phys; 2009; 19(3):158-72. PubMed ID: 19761093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Dose reduction through gridless technique in digital full-field mammography].
    Diekmann F; Diekmann S; Berzeg S; Bick U; Fischer T; Hamm B
    Rofo; 2003 Jun; 175(6):769-74. PubMed ID: 12811688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correlation between physical measurements and observer evaluations of image quality in digital chest radiography.
    Yalcin A; Olgar T; Sancak T; Atac GK; Akyar S
    Med Phys; 2020 Sep; 47(9):3935-3944. PubMed ID: 32427360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Musculoskeletal computed radiography in children: scatter reduction and improvement in bony trabecular sharpness using air gap placement of the imaging plate.
    Kottamasu SR; Kuhns LR
    Pediatr Radiol; 1997 Feb; 27(2):119-23. PubMed ID: 9028842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation between the signal-to-noise ratio improvement factor (KSNR) and clinical image quality for chest imaging with a computed radiography system.
    Moore CS; Wood TJ; Saunderson JR; Beavis AW
    Phys Med Biol; 2015 Dec; 60(23):9047-58. PubMed ID: 26540441
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scatter compensation for digital chest radiography using maximum likelihood expectation maximization.
    Floyd CE; Baydush AH; Lo JY; Bowsher JE; Ravin CE
    Invest Radiol; 1993 May; 28(5):427-33. PubMed ID: 8496036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficacy of the scatter correction algorithm in portable chest radiography.
    Lawson M; Qian L; Lau KK; Lau T; Massey D; Badawy M
    Emerg Radiol; 2022 Oct; 29(5):809-817. PubMed ID: 35612644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved Bayesian image estimation for digital chest radiography.
    Baydush AH; Bowsher JE; Laading JK; Floyd CE
    Med Phys; 1997 Apr; 24(4):539-45. PubMed ID: 9127306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.