These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35085582)

  • 1. Carbonyl reduction of 4-oxonon-2-enal (4-ONE) by Sniffer from D. magna and D.pulex.
    Strehse JS; Hoffmann D; Protopapas N; Martin HJ; Maser E
    Chem Biol Interact; 2022 Feb; 354():109833. PubMed ID: 35085582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Drosophila carbonyl reductase sniffer is an efficient 4-oxonon-2-enal (4ONE) reductase.
    Martin HJ; Ziemba M; Kisiela M; Botella JA; Schneuwly S; Maser E
    Chem Biol Interact; 2011 May; 191(1-3):48-54. PubMed ID: 21167142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbonyl reductase sniffer from the model organism daphnia: Cloning, substrate determination and inhibitory sensitivity.
    Strehse JS; Protopapas N; Maser E
    Chem Biol Interact; 2019 Jul; 307():29-36. PubMed ID: 30991043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human carbonyl reductase catalyzes reduction of 4-oxonon-2-enal.
    Doorn JA; Maser E; Blum A; Claffey DJ; Petersen DR
    Biochemistry; 2004 Oct; 43(41):13106-14. PubMed ID: 15476404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of human mitochondrial aldehyde dehydrogenase by 4-hydroxynon-2-enal and 4-oxonon-2-enal.
    Doorn JA; Hurley TD; Petersen DR
    Chem Res Toxicol; 2006 Jan; 19(1):102-10. PubMed ID: 16411662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbonyl reductases from Daphnia are regulated by redox cycling compounds.
    Ebert B; Ebert D; Koebsch K; Maser E; Kisiela M
    FEBS J; 2018 Aug; 285(15):2869-2887. PubMed ID: 29893480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aldose reductase catalyzes reduction of the lipid peroxidation product 4-oxonon-2-enal.
    Doorn JA; Srivastava SK; Petersen DR
    Chem Res Toxicol; 2003 Nov; 16(11):1418-23. PubMed ID: 14615967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent adduction of nucleophilic amino acids by 4-hydroxynonenal and 4-oxononenal.
    Doorn JA; Petersen DR
    Chem Biol Interact; 2003 Feb; 143-144():93-100. PubMed ID: 12604193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent modification of amino acid nucleophiles by the lipid peroxidation products 4-hydroxy-2-nonenal and 4-oxo-2-nonenal.
    Doorn JA; Petersen DR
    Chem Res Toxicol; 2002 Nov; 15(11):1445-50. PubMed ID: 12437335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into the neuroprotective-acting carbonyl reductase Sniffer of Drosophila melanogaster.
    Sgraja T; Ulschmid J; Becker K; Schneuwly S; Klebe G; Reuter K; Heine A
    J Mol Biol; 2004 Oct; 342(5):1613-24. PubMed ID: 15364585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute toxicity of organic chemicals to Gammarus pulex correlates with sensitivity of Daphnia magna across most modes of action.
    Ashauer R; Hintermeister A; Potthoff E; Escher BI
    Aquat Toxicol; 2011 May; 103(1-2):38-45. PubMed ID: 21392493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interspecific differences between D. pulex and D. magna in tolerance to cyanobacteria with protease inhibitors.
    Kuster CJ; Von Elert E
    PLoS One; 2013; 8(5):e62658. PubMed ID: 23650523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration.
    Botella JA; Ulschmid JK; Gruenewald C; Moehle C; Kretzschmar D; Becker K; Schneuwly S
    Curr Biol; 2004 May; 14(9):782-6. PubMed ID: 15120069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by carbon tetrachloride or ADP-iron in isolated rat hepatocytes and rat liver microsomal suspensions.
    Poli G; Dianzani MU; Cheeseman KH; Slater TF; Lang J; Esterbauer H
    Biochem J; 1985 Apr; 227(2):629-38. PubMed ID: 4004782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient whole-cell oxidation of α,β-unsaturated alcohols to α,β-unsaturated aldehydes through the cascade biocatalysis of alcohol dehydrogenase, NADPH oxidase and hemoglobin.
    Qiao Y; Wang C; Zeng Y; Wang T; Qiao J; Lu C; Wang Z; Ying X
    Microb Cell Fact; 2021 Jan; 20(1):17. PubMed ID: 33468136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbonyl reduction of warfarin: Identification and characterization of human warfarin reductases.
    Malátková P; Sokolová S; Chocholoušová Havlíková L; Wsól V
    Biochem Pharmacol; 2016 Jun; 109():83-90. PubMed ID: 27055738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myxococcus CsgA, Drosophila Sniffer, and human HSD10 are cardiolipin phospholipases.
    Boynton TO; Shimkets LJ
    Genes Dev; 2015 Sep; 29(18):1903-14. PubMed ID: 26338420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human microsomal carbonyl reducing enzymes in the metabolism of xenobiotics: well-known and promising members of the SDR superfamily.
    Skarydová L; Wsól V
    Drug Metab Rev; 2012 May; 44(2):173-91. PubMed ID: 22181347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rabbit 3-hydroxyhexobarbital dehydrogenase is a NADPH-preferring reductase with broad substrate specificity for ketosteroids, prostaglandin D₂, and other endogenous and xenobiotic carbonyl compounds.
    Endo S; Matsunaga T; Matsumoto A; Arai Y; Ohno S; El-Kabbani O; Tajima K; Bunai Y; Yamano S; Hara A; Kitade Y
    Biochem Pharmacol; 2013 Nov; 86(9):1366-75. PubMed ID: 23994167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Annotation of the Daphnia magna nuclear receptors: comparison to Daphnia pulex.
    Litoff EJ; Garriott TE; Ginjupalli GK; Butler L; Gay C; Scott K; Baldwin WS
    Gene; 2014 Nov; 552(1):116-25. PubMed ID: 25239664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.