These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 35085727)

  • 1. On the progress of hydrogel-based 3D printing: Correlating rheological properties with printing behaviour.
    Bom S; Ribeiro R; Ribeiro HM; Santos C; Marto J
    Int J Pharm; 2022 Mar; 615():121506. PubMed ID: 35085727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printable Dynamic Hydrogel: As Simple as it Gets!
    Díaz A; Herrada-Manchón H; Nunes J; Lopez A; Díaz N; Grande HJ; Loinaz I; Fernández MA; Dupin D
    Macromol Rapid Commun; 2022 Nov; 43(21):e2200449. PubMed ID: 35904533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues.
    Murab S; Gupta A; Włodarczyk-Biegun MK; Kumar A; van Rijn P; Whitlock P; Han SS; Agrawal G
    Carbohydr Polym; 2022 Nov; 296():119964. PubMed ID: 36088004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks.
    Lee SC; Gillispie G; Prim P; Lee SJ
    Chem Rev; 2020 Oct; 120(19):10834-10886. PubMed ID: 32815369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silk fibroin reactive inks for 3D printing crypt-like structures.
    Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA
    Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Printability and Shape Fidelity of Bioinks in 3D Bioprinting.
    Schwab A; Levato R; D'Este M; Piluso S; Eglin D; Malda J
    Chem Rev; 2020 Oct; 120(19):11028-11055. PubMed ID: 32856892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering.
    You F; Eames BF; Chen X
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28737701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures.
    Greco I; Miskovic V; Varon C; Marraffa C; Iorio CS
    Front Bioeng Biotechnol; 2022; 10():896166. PubMed ID: 35875487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution and fidelity 3D printing of Laponite and alginate ink hydrogels for tunable biomedical applications.
    Munoz-Perez E; Perez-Valle A; Igartua M; Santos-Vizcaino E; Hernandez RM
    Biomater Adv; 2023 Jun; 149():213414. PubMed ID: 37031611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Mucin-Based Bio-Ink for 3D Printing of Objects with Anti-Biofouling Properties.
    Rickert CA; Mansi S; Fan D; Mela P; Lieleg O
    Macromol Biosci; 2023 Nov; 23(11):e2300198. PubMed ID: 37466113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels.
    Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extrusion 3D printing of keratin protein hydrogels free of exogenous chemical agents.
    Brodin E; Boehmer M; Prentice A; Neff E; McCoy K; Mueller J; Saul J; Sparks JL
    Biomed Mater; 2022 Jul; 17(5):. PubMed ID: 35793683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and Characterization of Dual Stimuli-Sensitive Biodegradable Polyurethane Soft Hydrogels for 3D Cell-Laden Bioprinting.
    Hsiao SH; Hsu SH
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29273-29287. PubMed ID: 30133249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications
    Suntornnond R; Ng WL; Huang X; Yeow CHE; Yeong WY
    J Mater Chem B; 2022 Aug; 10(31):5989-6000. PubMed ID: 35876487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Hydrogels as Three-Dimensional Bioprinting Ink for Tissue Engineering.
    Xie M; Su J; Zhou S; Li J; Zhang K
    Gels; 2023 Jan; 9(2):. PubMed ID: 36826258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.