These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 35085780)
1. Engineering precursor supply for the high-level production of ergothioneine in Saccharomyces cerevisiae. van der Hoek SA; Rusnák M; Wang G; Stanchev LD; de Fátima Alves L; Jessop-Fabre MM; Paramasivan K; Jacobsen IH; Sonnenschein N; Martínez JL; Darbani B; Kell DB; Borodina I Metab Eng; 2022 Mar; 70():129-142. PubMed ID: 35085780 [TBL] [Abstract][Full Text] [Related]
2. Engineering the Yeast van der Hoek SA; Darbani B; Zugaj KE; Prabhala BK; Biron MB; Randelovic M; Medina JB; Kell DB; Borodina I Front Bioeng Biotechnol; 2019; 7():262. PubMed ID: 31681742 [TBL] [Abstract][Full Text] [Related]
3. [Construction and optimization of ergothioneine-producing Wang L; Wang Y; Li J; DU G; Kang Z Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):796-806. PubMed ID: 35234399 [TBL] [Abstract][Full Text] [Related]
4. Toward more efficient ergothioneine production using the fungal ergothioneine biosynthetic pathway. Chen Z; He Y; Wu X; Wang L; Dong Z; Chen X Microb Cell Fact; 2022 May; 21(1):76. PubMed ID: 35525939 [TBL] [Abstract][Full Text] [Related]
5. Engineering Methyltransferase and Sulfoxide Synthase for High-Yield Production of Ergothioneine. Zhang L; Tang J; Feng M; Chen S J Agric Food Chem; 2023 Jan; 71(1):671-679. PubMed ID: 36571834 [TBL] [Abstract][Full Text] [Related]
6. Successful biosynthesis of natural antioxidant ergothioneine in Saccharomyces cerevisiae required only two genes from Grifola frondosa. Yu YH; Pan HY; Guo LQ; Lin JF; Liao HL; Li HY Microb Cell Fact; 2020 Aug; 19(1):164. PubMed ID: 32811496 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering of Saccharomyces cerevisiae for hydroxytyrosol overproduction directly from glucose. Bisquert R; Planells-Cárcel A; Valera-García E; Guillamón JM; Muñiz-Calvo S Microb Biotechnol; 2022 May; 15(5):1499-1510. PubMed ID: 34689412 [TBL] [Abstract][Full Text] [Related]
8. Engineering ergothioneine production in Yarrowia lipolytica. van der Hoek SA; Rusnák M; Jacobsen IH; Martínez JL; Kell DB; Borodina I FEBS Lett; 2022 May; 596(10):1356-1364. PubMed ID: 34817066 [TBL] [Abstract][Full Text] [Related]
9. Gram-scale fermentative production of ergothioneine driven by overproduction of cysteine in Escherichia coli. Tanaka N; Kawano Y; Satoh Y; Dairi T; Ohtsu I Sci Rep; 2019 Feb; 9(1):1895. PubMed ID: 30760790 [TBL] [Abstract][Full Text] [Related]
10. Fermentative Production of Ergothioneine by Exploring Novel Biosynthetic Pathway and Remodulating Precursor Synthesis Pathways. Zhang H; Zhang Y; Zhao M; Zabed HM; Qi X J Agric Food Chem; 2024 Jun; 72(25):14264-14273. PubMed ID: 38860833 [TBL] [Abstract][Full Text] [Related]
11. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206 [TBL] [Abstract][Full Text] [Related]
12. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Levisson M; Patinios C; Hein S; de Groot PA; Daran JM; Hall RD; Martens S; Beekwilder J Microb Cell Fact; 2018 Jul; 17(1):103. PubMed ID: 29970082 [TBL] [Abstract][Full Text] [Related]
13. Heterologous and High Production of Ergothioneine in Escherichia coli. Osawa R; Kamide T; Satoh Y; Kawano Y; Ohtsu I; Dairi T J Agric Food Chem; 2018 Feb; 66(5):1191-1196. PubMed ID: 29276826 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions. Kim SK; Jo JH; Park YC; Jin YS; Seo JH Enzyme Microb Technol; 2017 Jun; 101():30-35. PubMed ID: 28433188 [TBL] [Abstract][Full Text] [Related]
15. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae. Zhao Y; Zuo F; Shu Q; Yang X; Deng Y Appl Environ Microbiol; 2023 Jun; 89(6):e0053523. PubMed ID: 37212714 [TBL] [Abstract][Full Text] [Related]
16. An integrated yeast-based process for cis,cis-muconic acid production. Wang G; Tavares A; Schmitz S; França L; Almeida H; Cavalheiro J; Carolas A; Øzmerih S; Blank LM; Ferreira BS; Borodina I Biotechnol Bioeng; 2022 Feb; 119(2):376-387. PubMed ID: 34786710 [TBL] [Abstract][Full Text] [Related]
17. Systematic Metabolic Engineering of Shi B; Ma T; Ye Z; Li X; Huang Y; Zhou Z; Ding Y; Deng Z; Liu T J Agric Food Chem; 2019 Oct; 67(40):11148-11157. PubMed ID: 31532654 [TBL] [Abstract][Full Text] [Related]
18. Metabolic Engineering of Saccharomyces cerevisiae for Fermentative Production of Heme. Lee HJ; Shin DJ; Nho SB; Lee KW; Kim SK Biotechnol J; 2024 Oct; 19(10):e202400351. PubMed ID: 39380497 [TBL] [Abstract][Full Text] [Related]
19. L-malic acid production from xylose by engineered Saccharomyces cerevisiae. Kang NK; Lee JW; Ort DR; Jin YS Biotechnol J; 2022 Mar; 17(3):e2000431. PubMed ID: 34390209 [TBL] [Abstract][Full Text] [Related]
20. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]