BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 35085780)

  • 1. Engineering precursor supply for the high-level production of ergothioneine in Saccharomyces cerevisiae.
    van der Hoek SA; Rusnák M; Wang G; Stanchev LD; de Fátima Alves L; Jessop-Fabre MM; Paramasivan K; Jacobsen IH; Sonnenschein N; Martínez JL; Darbani B; Kell DB; Borodina I
    Metab Eng; 2022 Mar; 70():129-142. PubMed ID: 35085780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the Yeast
    van der Hoek SA; Darbani B; Zugaj KE; Prabhala BK; Biron MB; Randelovic M; Medina JB; Kell DB; Borodina I
    Front Bioeng Biotechnol; 2019; 7():262. PubMed ID: 31681742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Construction and optimization of ergothioneine-producing
    Wang L; Wang Y; Li J; DU G; Kang Z
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):796-806. PubMed ID: 35234399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward more efficient ergothioneine production using the fungal ergothioneine biosynthetic pathway.
    Chen Z; He Y; Wu X; Wang L; Dong Z; Chen X
    Microb Cell Fact; 2022 May; 21(1):76. PubMed ID: 35525939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Methyltransferase and Sulfoxide Synthase for High-Yield Production of Ergothioneine.
    Zhang L; Tang J; Feng M; Chen S
    J Agric Food Chem; 2023 Jan; 71(1):671-679. PubMed ID: 36571834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Successful biosynthesis of natural antioxidant ergothioneine in Saccharomyces cerevisiae required only two genes from Grifola frondosa.
    Yu YH; Pan HY; Guo LQ; Lin JF; Liao HL; Li HY
    Microb Cell Fact; 2020 Aug; 19(1):164. PubMed ID: 32811496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Saccharomyces cerevisiae for hydroxytyrosol overproduction directly from glucose.
    Bisquert R; Planells-Cárcel A; Valera-García E; Guillamón JM; Muñiz-Calvo S
    Microb Biotechnol; 2022 May; 15(5):1499-1510. PubMed ID: 34689412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering ergothioneine production in Yarrowia lipolytica.
    van der Hoek SA; Rusnák M; Jacobsen IH; Martínez JL; Kell DB; Borodina I
    FEBS Lett; 2022 May; 596(10):1356-1364. PubMed ID: 34817066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gram-scale fermentative production of ergothioneine driven by overproduction of cysteine in Escherichia coli.
    Tanaka N; Kawano Y; Satoh Y; Dairi T; Ohtsu I
    Sci Rep; 2019 Feb; 9(1):1895. PubMed ID: 30760790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentative Production of Ergothioneine by Exploring Novel Biosynthetic Pathway and Remodulating Precursor Synthesis Pathways.
    Zhang H; Zhang Y; Zhao M; Zabed HM; Qi X
    J Agric Food Chem; 2024 Jun; 72(25):14264-14273. PubMed ID: 38860833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering de novo anthocyanin production in Saccharomyces cerevisiae.
    Levisson M; Patinios C; Hein S; de Groot PA; Daran JM; Hall RD; Martens S; Beekwilder J
    Microb Cell Fact; 2018 Jul; 17(1):103. PubMed ID: 29970082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterologous and High Production of Ergothioneine in Escherichia coli.
    Osawa R; Kamide T; Satoh Y; Kawano Y; Ohtsu I; Dairi T
    J Agric Food Chem; 2018 Feb; 66(5):1191-1196. PubMed ID: 29276826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions.
    Kim SK; Jo JH; Park YC; Jin YS; Seo JH
    Enzyme Microb Technol; 2017 Jun; 101():30-35. PubMed ID: 28433188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae.
    Zhao Y; Zuo F; Shu Q; Yang X; Deng Y
    Appl Environ Microbiol; 2023 Jun; 89(6):e0053523. PubMed ID: 37212714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated yeast-based process for cis,cis-muconic acid production.
    Wang G; Tavares A; Schmitz S; França L; Almeida H; Cavalheiro J; Carolas A; Øzmerih S; Blank LM; Ferreira BS; Borodina I
    Biotechnol Bioeng; 2022 Feb; 119(2):376-387. PubMed ID: 34786710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic Metabolic Engineering of
    Shi B; Ma T; Ye Z; Li X; Huang Y; Zhou Z; Ding Y; Deng Z; Liu T
    J Agric Food Chem; 2019 Oct; 67(40):11148-11157. PubMed ID: 31532654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-malic acid production from xylose by engineered Saccharomyces cerevisiae.
    Kang NK; Lee JW; Ort DR; Jin YS
    Biotechnol J; 2022 Mar; 17(3):e2000431. PubMed ID: 34390209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.
    Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J
    Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose.
    Jiang J; Yin H; Wang S; Zhuang Y; Liu S; Liu T; Ma Y
    J Agric Food Chem; 2018 May; 66(17):4431-4438. PubMed ID: 29671328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.