BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35085781)

  • 1. Rational orthologous pathway and biochemical process engineering for adipic acid production using Pseudomonas taiwanensis VLB120.
    Bretschneider L; Heuschkel I; Bühler K; Karande R; Bühler B
    Metab Eng; 2022 Mar; 70():206-217. PubMed ID: 35085781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational Engineering of a Multi-Step Biocatalytic Cascade for the Conversion of Cyclohexane to Polycaprolactone Monomers in Pseudomonas taiwanensis.
    Schäfer L; Bühler K; Karande R; Bühler B
    Biotechnol J; 2020 Nov; 15(11):e2000091. PubMed ID: 32735401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocatalytic conversion of cycloalkanes to lactones using an in-vivo cascade in Pseudomonas taiwanensis VLB120.
    Karande R; Salamanca D; Schmid A; Buehler K
    Biotechnol Bioeng; 2018 Feb; 115(2):312-320. PubMed ID: 28986995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot synthesis of 6-aminohexanoic acid from cyclohexane using mixed-species cultures.
    Bretschneider L; Wegner M; Bühler K; Bühler B; Karande R
    Microb Biotechnol; 2021 May; 14(3):1011-1025. PubMed ID: 33369139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms.
    Karande R; Debor L; Salamanca D; Bogdahn F; Engesser KH; Buehler K; Schmid A
    Biotechnol Bioeng; 2016 Jan; 113(1):52-61. PubMed ID: 26153144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites.
    Lang K; Zierow J; Buehler K; Schmid A
    Microb Cell Fact; 2014 Jan; 13():2. PubMed ID: 24397404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A facile process for adipic acid production in high yield by oxidation of 1,6-hexanediol using the resting cells of Gluconobacter oxydans.
    Pyo SH; Sayed M; Örn OE; Amorrortu Gallo J; Fernandez Ros N; Hatti-Kaul R
    Microb Cell Fact; 2022 Oct; 21(1):223. PubMed ID: 36307807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-driven redox biocatalysis on gram-scale in Synechocystis sp. PCC 6803 via an in vivo cascade.
    Tüllinghoff A; Djaya-Mbissam H; Toepel J; Bühler B
    Plant Biotechnol J; 2023 Oct; 21(10):2074-2083. PubMed ID: 37439151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutively solvent-tolerant Pseudomonas taiwanensis VLB120∆ C∆ ttgV supports particularly high-styrene epoxidation activities when grown under glucose excess conditions.
    Volmer J; Lindmeyer M; Seipp J; Schmid A; Bühler B
    Biotechnol Bioeng; 2019 May; 116(5):1089-1101. PubMed ID: 30636283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximizing Biocatalytic Cyclohexane Hydroxylation by Modulating Cytochrome P450 Monooxygenase Expression in
    Schäfer L; Karande R; Bühler B
    Front Bioeng Biotechnol; 2020; 8():140. PubMed ID: 32175317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of adipic acid in metabolically engineered Saccharomyces cerevisiae.
    Zhang X; Liu Y; Wang J; Zhao Y; Deng Y
    J Microbiol; 2020 Dec; 58(12):1065-1075. PubMed ID: 33095385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440.
    Niu W; Willett H; Mueller J; He X; Kramer L; Ma B; Guo J
    Metab Eng; 2020 May; 59():151-161. PubMed ID: 32130971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-cell biocatalysis using the Acidovorax sp. CHX100 Δ6HX for the production of ω-hydroxycarboxylic acids from cycloalkanes.
    Salamanca D; Bühler K; Engesser KH; Schmid A; Karande R
    N Biotechnol; 2021 Jan; 60():200-206. PubMed ID: 33127412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Pseudomonas taiwanensis VLB120 with minimal genomic modifications for high-yield phenol production.
    Wynands B; Lenzen C; Otto M; Koch F; Blank LM; Wierckx N
    Metab Eng; 2018 May; 47():121-133. PubMed ID: 29548982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity.
    Volmer J; Neumann C; Bühler B; Schmid A
    Appl Environ Microbiol; 2014 Oct; 80(20):6539-48. PubMed ID: 25128338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Engineering of Phenylalanine Accumulation in
    Otto M; Wynands B; Lenzen C; Filbig M; Blank LM; Wierckx N
    Front Bioeng Biotechnol; 2019; 7():312. PubMed ID: 31824929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient production of lactobionic acid using genetically engineered Pseudomonas taetrolens as a whole-cell biocatalyst.
    Oh YR; Jang YA; Hong SH; Han JJ; Eom GT
    Enzyme Microb Technol; 2020 Nov; 141():109668. PubMed ID: 33051018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production host selection for asymmetric styrene epoxidation: Escherichia coli vs. solvent-tolerant Pseudomonas.
    Kuhn D; Bühler B; Schmid A
    J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1125-33. PubMed ID: 22526330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-Xylose assimilation via the Weimberg pathway by solvent-tolerant Pseudomonas taiwanensis VLB120.
    Köhler KA; Blank LM; Frick O; Schmid A
    Environ Microbiol; 2015 Jan; 17(1):156-70. PubMed ID: 24934825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway.
    Zhao M; Huang D; Zhang X; Koffas MAG; Zhou J; Deng Y
    Metab Eng; 2018 May; 47():254-262. PubMed ID: 29625225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.